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Abstract

The physiological functions of transforming growth factor (TGF)-� in cell signaling include
regulation of developmental processes and cell growth. Tumor cells very often display altered
regulation of the TGF� signaling pathway, either by defects in TGF� itself or in downstream
components of the pathway. TGF� can play a dual role in tumorigenesis, i.e. it can be either
tumor-suppressive or tumor-promoting. TGF� suppresses the growth of tumor cells; however,
in advanced tumors, it is associated with induction of progression, resulting in poor prognosis
for patients. The TGF� negative regulation of cytotoxic cell function, together with the
promotion of T-regulatory cell maturation, impairs anti-tumor responses. Recent studies have
elucidated new roles for TGF� signaling in the tumor microenvironment. Abrogation of proper
signaling induces epithelial-to-mesenchymal transition with pro-metastatic functions, resulting
in cancer progression. Thus, TGF� signaling in the tumor microenvironment plays an important
role in tumor initiation, progression, and metastasis by its capacity to regulate cross-talk
between tumor cells and other components of the local environment.
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Introduction

The malignant changes in healthy cells are sustained and
accompanied by alteration of stromal cells and related fibrous
structures, forming together the tumor stroma. The tumor cells
together with the surrounding immune cells, cancer-associated
fibroblasts (CAF), extracellular matrix (ECM) components, blood
and lymphatic vessels, and nerves constitute the tumor micro-
environment (TM). Many studies proved that the stromal com-
ponent of TM plays not only a supportive but also a crucial role in
cancer development: its components have the capacity to
influence and even to deregulate the signaling pathways and
interactions between normal and transformed cells in a continuous
cross-talk. During embryogenesis, interactions between epithelial
and mesenchymal cells in their local environment are essential for
the development of tissues and the whole organism. However, in
cancer, signaling pathways regulating these interactions are very
often deregulated.

Transforming growth factor (TGF)-�, interacting in the TM, is
considered as a critical regulator of tumor initiation and
progression. TGF� regulates processes supporting cancer inva-
siveness, regulation of immune cells of various types, activation,
and chemotaxis of fibroblasts. An important mechanism favoring
tumorigenesis is the induction of mesenchymal phenotype in
the epithelial tumor cells, commonly known as an epithelial-
to-mesenchymal transition (EMT). It was proved that this process
is induced by prolonged exposition to TGF� (Miettinen et al.,

1994). By this observation, it was suggested that TGF� plays a
dual role in the carcinogenesis. In early phases, TGF� attenuates
proliferation of the tumor cells by activation of growth arrest and
apoptosis, but, in advanced tumors, TGF� activates EMT
promoting tumor cells to be more aggressive and prone to
achieve metastatic phenotype (Thiery et al., 2009). TGF� also
suppresses immune response of non-malignant cells and immune
cells against cancer through its impact on their differentiation,
proliferation, and survival (Li et al., 2006). It promotes angio-
genesis and recruits immune cells producing cytokines that
stimulate tumor progression (Turner et al., 1990; Wiseman et al.,
1988). There are various experimental studies describing the role
of TGF� in initiation of cancer, but more precise investigations of
its functions in the TM are still needed. The aim of this review is
to address the role of TGF� signaling in the regulation of TM and,
particularly, how it contributes to the progression of cancer.
Understanding the critical roles of TGF� within the TM may
provide new targets for design of therapeutics against cancer.

Basic principles of TGFb signaling

We distinguish three TGF� molecules: TGF�1, TGF�2, and
TGF�3. They are secreted as inactive homodimers and belong to
the TGF� protein superfamily. This includes 33 members in
humans, such as activins, inhibins, bone morphogenic protein
(BMP), growth and differentiation factors (GDF), glial cell line-
derived neurotrophic factor (GDNF), and the above-mentioned
TGF� protein members (Massague, 2012; Piek et al., 1999). The
most abundant isoform is TGF�1, a 44-kDa protein, coded by
TGFB1 gene located at chromosome 19 (chromosome 7 in mice).
It is ubiquitously expressed in all tissues (Derynck et al., 1985).
TGF�2 is a 48-kDa protein coded by TGFB2 gene located at
chromosome 1. TGFB2 is expressed in neurons and astroglial
cells of embryonic tissues (Flanders et al., 1991), and it effects the
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heart, as well as other mesenchymal structures and development.
In the adult mouse, it is expressed in almost all tissues, especially
in the placenta, the male submaxillary gland and the lung, but not
in the liver (Boyer et al., 1999; Miller et al., 1989). The TGF�2
transcript attenuates T-cell maturation and immune responses in
the TM, thus it is supporting tumor growth (Schwyzer & Fontana,
1985). TGF�3 is a 47-kDa protein coded by TGFB3 gene located
at chromosome 14 (chromosome 12 in mice). It functions as a
regulator of palate development, in which it regulates cellular
adhesion and formation of ECM (Proetzel et al., 1995), but it is
also important for lung development and for wound healing in the
skin (Bandyopadhyay et al., 2006; Kaartinen et al., 1995). TGFB3
is expressed mainly in the umbilical cord (Stewart et al., 1996).

TGF� molecules, deposited in the extracellular matrix (ECM),
interact with three TGF� receptor types (T�RI, T�RII, and
T�RIII). All TGF� ligands differ in their binding affinity to
T�RII. Both TGF�1 and TGF�3 bind to T�RII. TGF�2
needs T�RI as a co-interacting partner for high-affinity inter-
action with T�RII, which binds alone to T�RIII (Derynck &
Zhang, 2003). T�RI and T�RII are predominantly localized at
the cell membrane in a homodimeric conformation. After
binding TGF�, T�RII is activated by autophosphorylation
and forms a heterotetrameric complex with T�RI. Thereafter,
T�RII transphosphorylates and activates T�RI. This mechanism
allows T�RI to phosphorylate its downstream mediators
SMAD2 and SMAD3 (Shi & Massague, 2003). Two types of
TGF� signaling cascades have been identified (Figure 1).

The canonical one is SMAD-dependent and the non-canonical
one is SMAD-independent. In general, the canonical cascade
involves phosphorylation of the carboxy-terminal serine residues
of the SMAD2 and SMAD3 proteins that are receptor-regulated
SMADs (also called receptor-SMADs; R-SMADs).
Phosphorylation allows their oligomerization with SMAD4, also
known as ‘co-SMAD’. This interaction is necessary for trans-
location of the complex to the nucleus (Schmierer & Hill, 2005)
in order to modulate gene transcription. SMAD 7 competitively
inhibits SMAD2/3 binding to T�RI (Inoue & Imamura, 2008).

Non-canonical signaling involves activation of PI3K-AKT,
RhoA, Rac1, Ras, Cdc42, Daxx, Par6, TAB1/TAK1, and MAPK
pathways (Bierie & Moses, 2006). These pathways are more
complex than the canonical one and involve more intensive cross-
talk between them. Among them, the Rho-Rock1 and AKT
pathways activated by TGF� significantly contribute to migratory
and invasive cellular phenotypes observed in various types of
cancer (Dumont et al., 2003). Pleiotropic TGF� ligands are
involved in many other processes; for example, they suppress cell
proliferation by repressing CDK4 expression and by activating the
expression of CDK inhibitors (Ewen et al., 1995; Polyak et al.,
1994). SMAD-dependent activation of Bcl-2 proteins is important
for regulation of programmed cell death (Pardali & Moustakas,
2007). In addition, the regulation of cellular adhesions by TGF�
signaling is very important for tumorigenesis, mainly via
decreases in E-cadherin and zonula adherens 1 production
and through cyto-skeletal re-arrangements (Huber et al., 2005).

Figure 1. Representation of main TGF�1 downstream pathways related to tumor microenvironment. See also text.
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Taken together, the above-mentioned facts highlight the
double-edged character of TGF� signaling.

TGFb production and activation

TGF� molecules are primarily synthesized as homodimers,
stabilized by disulfide bridges and non-covalent interactions,
and undergo intracellular processing before they act in signaling
cascades (Dubois et al., 1995). First, these pro-proteins are
cleaved in trans-Golgi apparatus by furin proteases to release
truncated TGF� dimer and a resting dimeric component called
‘latency-associated protein’ (LAP). Subsequently, LAP interacts
with TGF� to form the ‘small latent complex’ (SLC). Finally,
SLC associates with latent TGF� binding glycoprotein (LTBP) to
form a 240 kDa large latent complex (LLC) (Miyazono et al.,
1988). The LLC is secreted to the ECM network, where it is
deposited in an inactive form (Rifkin, 2005). The LTBP protein
is necessary for storing TGF� in the ECM and, thus, plays a key
role in TGF� accumulation and release. The LTBP family
includes four LTBP isomers (LTBP1–4) structurally similar to
fibrillin. Each LTBP contains two types of cysteine-rich domains,
i.e. an eight-cysteine domain and epidermal growth factor
(EGF)-like repeats (Rifkin, 2005). All isomers of LTBP contrib-
ute to tumorigenesis in various types of cancer.

Many physiological processes and different factors activating
extracellularly-deposited TGF� from latent complex have been
described in vivo so far, e.g. retinoid acid, integrins, matrix
metalloproteases (MMP)-2, MMP-9, reactive oxygen species
(ROS), irradiation, and thrombospondin-1 (TSP-1) (Barcellos-
Hoff & Dix, 1996; Munger et al., 1999; Schultz-Cherry &
Murphy-Ullrich, 1993; Yu & Stamenkovic, 2000). In addition,
TGF� can be activated by a decrease in the pH in a local
environment. For example, an acidic environment is formed
in vivo by osteoclasts attached to bone tissue during resorption.
It was shown in in vitro experiments that the pH in this site was
low enough to activate proteases that, in turn, allowed for the
release of latent TGF� complexes (Oursler, 1994). The protease
plasmin also has numerous functions in the TGF� activation
cascade in vivo (Lyons et al., 1988). Specifically, LAP is
proteolytically cleaved by plasmin, with a change of LTBP
complex conformation and release of mature TGF� from the
complex. Retinoic acid can also activate latent TGF� by similar
processes (Kojima & Rifkin, 1993).

Interestingly, TSP-1 not only has an anti-angiogenic role, but it
also appears to play a role in cancer initiation and progression
through other mechanisms (Lawler & Detmar, 2004). Even
mechanical tensions in the ECM can allow release of TGF� from
stored LTBP complex, a mechanism possible under tissue
stiffening during chronic inflammation or tumor progression
(Wipff et al., 2007; Wipff & Hinz, 2008). Each of the
abovementioned factors interfere with the non-covalent inter-
actions between LAP and mature TGF� and, via this mechanism,
they allow TGF� to be released from its latent state.

Role of TGFb in cancer

It is well known that components of the TGF� signaling cascade
are very often deregulated in various types of cancer. As noted
above, TGF� has a dual role in tumorigenesis; it can be a tumor-
suppressing or tumor-promoting factor, depending on the stage of
tumor development. Tumor suppression is promoted by repressing
expression of c-Myc and cyklin-dependent kinase genes (CDKs)
and by activating expression of CDK inhibitor genes p15, p21
and p27 (Datto et al., 1995; Hannon & Beach, 1994; Polyak et al.,
1994). TGF� is also able to down-regulate or inhibit expression
of CDK4 and CDC25A genes (Iavarone & Massague, 1999).
The second role of TGF�, as a cancer promoter, is exerted

through an inhibition of apoptosis and/or by a stimulation of
proliferation.

Normally, TGF� acts as a tumor suppressor in mature tissues
and is generally produced in the TM. How then is it possible that
tumor cells can proliferate in such suppressive environment?
Cancer cells have evolved many strategies on how to use TGF�
for their survival. Typically, transformed cells can have mutated
or disrupted TGF� receptors or altered SMAD signaling
pathways. Especially in breast, prostate, and colorectal carcinoma
(CRC), alterations in the TGF� signaling cascade can have
prognostic significance (Bierie & Moses, 2006).

TGFBR2 is probably the most commonly affected gene from
all genes coding components of the cascade. It codes one of the
most important proteins of the cascade-T�RII, which recognizes
and binds all isoforms of TGF�. Repressed or down-regulated
expression of TGFBR2 is found in many types of cancer and it is
leading to increased tumor spreading. In addition, it is associated
with the microsatellite instability in CRC. Hereditary and sporadic
CRC tend to have high microsatellite instability in 10-bp poly-A
sequence of TGFBR2, causing malfunction of T�RII (Kim et al.,
2000). Apart from APC, K-RAS and TP53 genes, also microsat-
ellite stable CRCs display mutations in TGFBR2. Moreover,
TGFBR1, SMAD2, and SMAD4 genes are very commonly lost,
mutated, or functionally attenuated. For example, TGF-�1T869C
polymorphism is associated with 2.7-fold greater relative risk of
developing squamous cell carcinoma, suggesting that also gene
polymorphisms can affect the proper functions of TGF� protein
(Carneiro et al., 2013). Still, the real contribution of the gene
polymorphisms on the development of various types of cancer
still needs to be clarified.

Another type of protein, E3 ligase Smurf2, is commonly up-
regulated in squamous cell carcinomas with low levels of SMAD2
phosphorylation (Fukuchi et al., 2002). DNA methylation of
TGFBR1 and TGFBR2 genes was observed in some cancers,
suggesting the existence of epigenetic mechanisms regulating the
pathway (Kang et al., 1999). An increased angiogenesis and
invasion is induced by SMAD-independent up-regulation of MMP
expression (Safina et al., 2007). Interestingly, TGF� signaling in
the malignant phenotype is able to regulate microRNA (miR)
function. For example, hepatocellular carcinoma cells express
CC-chemokine ligand 22 (CCL22) only when expression of
miR-34a is inhibited by TGF� (Yang et al., 2012). TGF�
increases the expression of miR-29a, which induces angiogenesis
and represses the expression of phosphatase and tensin homolog
(PTEN) (Wang et al., 2013). Important too is the TGF�-induced
expression of miR-494 in myeloid-derived suppressor cells
(MDSC); this leads to increases in expression of CXC chemokine
receptor and reduction in the expression of PTEN. These
regulations also lead to increased expression of MMP3,
MMP13, and MMP14 (Liu et al., 2012). Further, tumor-associated
natural killer (NK) cells are silenced by TGF�-inducible miR-183
(Donatelli et al., 2014).

The importance of TGF� signaling in tumorigenesis has been
studied in vitro by many investigators, mimicking conditions of
tumors in patients by preparing TGF� gene mutants or by directly
treating the cancer cells with TGF�. For example, Sartor et al.
(2010) proved that TGF� had a capacity to increase expression of
genes coding collagen type 1, collagen type 2, MMP2, MMP9,
and lysyl oxidase homolog 4 in A549 lung adenocarcinoma cells.
Those authors also observed increased expression of vascular
endothelial growth factor A (VEGFA) and TSP-1. Advanced
tumor stages are characterized by epithelial changes, but also by
changes affecting the TM. Elevated TGF� signaling is associated
with increased metastases and poor prognosis for patients.
Interestingly, loss of TGF� signaling also correlates with
increased metastases and progression and with poor prognosis
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(Forrester et al., 2005). Deregulation of TGF� signaling is very
often associated with stromal changes, such as activation of
fibroblasts, deposition of ECM, increased angiogenesis and
infiltration of immune cells (Bierie & Moses, 2006). Finally, in
consideration of the heterogeneity of cancer cells in a tumor, it
may be supposed that only part of these cells could be sensitive to
TGF�. However, this hypothesis still warrants further investiga-
tion. Interestingly, stromal changes induced by altered TGFB
expression were found to increase metastatic activity of TGF�
unresponsive tumor cells (Finak et al., 2008). Thus, TGF� can
induce tumor progression directly or indirectly.

TGFb regulation of immune cells

TGF� is considered one of the most important regulators of
proliferation and differentiation of immune cells deposited in a
TM (Table 1). TGF� is produced by and binds to many different
types of immune cells, including macrophages, dendritic cells
(DC), NK cells, B-cells, and T-cells. Cancer cells can also
produce TGF�; therefore, TGF� has a capacity to modulate
innate as well as adaptive immunity under both physiologic and
cancer states (Yang et al., 2010).

In B-cells, TGF� regulates expression of immunoglobulins,
surface receptors, and major histocompatibility complex type II
proteins (MHC II). These proteins are the direct markers of B-cell
maturation and differentiation (Lebman & Edmiston, 1999).
TGF� also regulates T-cell maturation. It also inhibits prolifer-
ation of naı̈ve CD4+ cells and T-cell expansion (Gilbert et al.,
1997). Experiments on transgenic mice bearing dominant-
negative TGFBR2 gene showed there was spontaneous T-cell
differentiation leading to development of autoimmune diseases
(Gorelik & Flavell, 2002). TGF� favors tumor progression by
suppressing T-cell production of perforins, granzymes, and other
toxins. Thus, TGF� negatively regulates both the expansion and
cytotoxic activity of CD8+ T-cells, functions crucial to anti-tumor
immunity (Thomas & Massague, 2005).

TGF� also has a capacity to induce FoxP3 gene expression and
subsequently to generate regulatory T (Treg)-cells. Together with
interleukin (IL)-6, TGF� induces TH17 cells that produce IL-17,
important for activation of leukocytes (Shevach, 2009; Weaver
et al., 2006). SMAD4�/� T-cells producing TH2-type cytokines
that promote stromal expansion were found in gastrointestinal
tumors (Kim et al., 2006). TGF� inhibits the proper maturation of
NK cells, which then lose their capacity to recognize non-self
antigens, a process important for clearance of tumor cells (Marcoe
et al., 2012). Moreover, TGF� negatively regulates the ability of
DC to present foreign antigens (Tanaka et al., 2010).

Proliferation of monocyte–macrophage lineage cells is sup-
pressed mainly by TGF�1 ligands (Chantry et al., 1989;
Tsunawaki et al., 1988). In the TM, two types of macrophages
can be found: M1 that deliver active anti-cancer functions and M2
type that promote tumor progression and metastasis. M2 are the
most abundant inside tumors, and are also known as tumor-
associated macrophages (TAM) (Mantovani et al., 2006). TGF� is
able to induce a shift of polarization from anti-tumor M1 to M2
TAM (Gong et al., 2012). Interestingly, in vitro inhibition of
TGF� signaling in TAM, blocking the T�RI and ligating the toll-
like receptor 7 by an agonist reconverted M2 type macrophages
into M1 type, provided new perspectives in cancer therapy
(Peng et al., 2013). Recently, it was discovered that TGF� has the
capacity to transform anti-tumorigenic neutrophils (N1) into pro-
tumorigenic neutrophils (N2) associated with production of
MMP9 and chemokine CXCL1 (Fridlender et al., 2009).
Interestingly, depletion of TGF� results in reversible polarization
of N2 neutrophils to N1 with an anti-tumor phenotype.
Unexpected properties of TGF� were recently described. TGF�
administered to mesenchymal stem cells (MSC), instead of
leading to an increase, reversed their immunosuppressive activity
upon T-cells. Moreover, TGF� produced by MSC was found (in
an autocrine manner) to inhibit inflammatory cytokine-induced
inducible nitric oxide synthase (iNOS) expressed by MSCs
themselves (Xu et al., 2014a).

The most important regulator of inflammation, NF-�B, is also
negatively regulated by TGF�1 via activation of inhibitor of
kappa B (I�B) protein, with down-regulation of the pro-inflam-
matory and pro-metastatic functions of NF-�B. However, in some
studies on cell lines, a possible double-faceted effect of TGF� was
noted, with TGF� either promoting or inhibiting NF-�B functions
(Arsura et al., 1996; Han et al., 1998). A recent study on gastric
cancer development showed how TGF� effects are microenviron-
mental. In a TGF� mutant, with impeded binding of TGF� to the
latent TGF� binding protein (Tgfb1�/C33S), generalized inflam-
mation and increased tumorigenesis developed. By introducing a
second mutation into, and thereby subsequent suppression of, the
recombination activator gene 2 (Tgfb1�/C33S; Rag2�/�), the
inflammatory and pro-carcinogenic effects did not appear.
Those authors indicated this experiment showed how changes in
tumor onset were more directly associated with inflammatory
processes, rather than with the loss of TGF� protein. This
experiment also highlights the role of TGF� in controlling
inflammation (Ota et al., 2014).

TGFb as a regulator of tumor microenvironment

The tumor microenvironment is very dynamic and the active
crosstalk within the various types of involved cells (both cancer
and non-cancer cells) permits a tumor to establish and progress,
escaping host immunosurveillance and anti-cancer responses. The
TM is commonly a hypoxic area with a low pH, conditions
supporting DNA damage and suppressed repair (Bristow et al.,
2008). Moreover, it is fueled by persistent inflammation that
importantly contributes in supporting and promoting tumor

Table 1. Regulation of immune cell function by TGF�1.

Regulated function
Effect of
TGF � Types of immune cells

Maturation # Dendritic cells (DC)
Antigen presentation # DC

# Macrophages (MT)
Chemotaxis # DC

# Natural killer cells (NK)
" MO
" Mast cells

Proliferation # CD8+ T cells
# CD4+ T cells

Effector function # CD8+ T cells
# CD4+ T cells
# Neutrophils
# MT

TH1 and TH2 cells # CD4+ T cells
Treg cells " CD4+ T cells
TH17 cells l CD4+ T cells
IgA class switching " B cells
Activation # B cells
Apoptosis " B cells
Cytotoxicity # NK
Inflammatory cytokine

secretion
" Neutrophils

" MT

Polarisation from N1
type to N2 type

" Neutrophils

Polarisation from M1
type to M2 type

" MT

", Up-regulation; #, inhibition.
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development and spread (Balkwill & Mantovani, 2001). Normal
TGF�1 master regulation of inflammation in physiological
conditions turns to inhibitory and re-modeling functions in the
TM, frustrating the anti-cancer response efficacy. Further, the
organ microenvironment can affect progression of tumors, as
recently described for experimental hepatocellular carcinoma
(HCC). For example, when human HCC cells were inoculated in
the subcutaneous or in the liver of nu/nu mice, based on the
different sites of development, TGF�1 mRNA levels were found
to be significantly lower in liver tumors than in subcutaneous
tumors, and these levels correlated with higher tumor weight and
less pulmonary metastasis for the orthotopic cancers (Li et al.,
2013).

TGF� was for the first time observed as a regulator of TM
when Bhowmick et al. (2004) found that deletion of the TGFBR2
gene in mouse fibroblasts was inducing transformation of adjacent
prostate and stomach epithelia. In vivo, various epithelial cells
also displayed deletion of TGFBR2, and this deletion resulted in
increased tumor progression and metastatic growth (Yang &
Moses, 2008). Moreover, hepatocyte growth factor (HGF) and
HGF receptor MET are very often up-regulated in tissues
displaying TGF� down-regulation, suggesting an important role
of paracrine signaling in these tissues. Recently, an experiment
was designed in which induction of TGF� in CAF stimulated
production of IL-11, thereby triggering STAT3. Mice treated with
TGFBR1 inhibitor were not able to form metastases (Calon et al.,
2012).

TGF� is also involved in regulation of chemokines, chemokine
receptors, and angiogenesis. For example, breast cancer cells
increasingly produce TGF�, which induce production of angio-
poetin-like 4 proteins, thereby enhancing formation of metastases
in lungs (Padua et al., 2008). However, loss of T�RII in these
cancer cells correlates with recruitment of F4/80+ cells that
produce pro-inflammatory proteins CXCL1 and CXCL5 (Yang &
Moses, 2008). This complete loss of TGF� signaling in epithelial
cells correlates with reduced survival in patients with breast
cancer, especially estrogen-receptor-positive patients (Bierie
et al., 2009). Even the loss of T�RIII contributes to tumor
progression. Hanks et al. (2013) elucidated a new mechanism
in melanoma and breast cancer cells in which loss of
tumor-produced T�RIII induced the production of indoleamine
2,3-dioxygenase in plasmacytoid DC and of CCL22 chemokines
in myeloid DC, thereby mediating Treg infiltration and suppres-
sion of anti-tumor immunity. Further, hypoxic conditions
(a characteristic marker of TM) were seen to promote breast
cancer as a result of mesenchymal stem cell secretion of TGF�
(Hung et al., 2013).

Other patterns have been observed in gastric carcinoma and in
colon cancer models. In gastric cancer SNU16mAd cells, an
SMAD-dependent pathway activates production of integrins
through protein kinase Cd (PKCd), thereby enhancing invasive-
ness of the tumor cells (Lee et al., 2005). In cis-Apc+/D716 Smad+/–

mice, an increased recruitment of CCR1+ myeloid cells with
promotion of colon cancer cell invasiveness was found (Kitamura
et al., 2007). The blockage of TGF� was found to increase
expression of pro-inflammatory cytokine genes such as IL-5,
IL-6, and IL-13. While this can lead to the negative effects about
promotion of tumor progression described by Mantovani et al.
(2006), it also increases the response against tumor elicited by
specific immunotherapy (Kim et al., 2006). Once again, the
context and timing of cytokine network activity is critical.
Increased inflammation in the TM was also observed in various
non-GI cancers (e.g. head and neck carcinomas), and this was put
in relation to deregulation of TGF� signaling. Crosstalk between
TGF� and IL-1 signaling pathways appears to be very common in
some cancer cell lines (Lu et al., 2007).

Lastly, TGF� is important for EMT regulation, a key process
leading to tumor invasion and metastases formation (Thiery,
2002). EMT occurs during wound healing, normal cell develop-
ment, and abnormally in cancer progression in which epithelial
cells differentiate into mesenchymal cells (Thiery et al., 2009).
EMT is associated with transition of primordial epithelial cells
during gastrulation, generating neural crest cells and formation of
endocardial tissue. Epithelial cells can transform into fibroblasts
during wound healing, regeneration, and fibrosis. EMT is also a
characteristic process accompanying cancerogenesis (Zeisberg &
Neilson, 2009). The EMT implies disruption of tight junctions
and delocalization of tight junction proteins, disruption of
adherent junctions, and re-organization of actin fibers. Epithelial
cells display mesenchymal markers and show spindle-like
morphology (Thiery, 2002). TGF� is responsible for EMT
maintenance through production of protein surviving that stabil-
izes tubulin and Aurora B, resulting in inhibition of cell cycle
arrest and apoptosis (Lee et al., 2013). Moreover, colon cancer
cells are able to transform normal fibroblasts into CAF by
secretion of TGF� (Hawinkels et al., 2014). CLIC4 (chloride
intracellular channel 4) is a downstream effector of the TGF�
signaling pathway, regulating transition of normal fibroblasts to
activated pro-metastatic myofibroblasts through p38 signaling.
Renal, ovarian, and breast cancers showed increased production
of CLIC4, which should be considered as a new target of anti-
tumor therapy (Shukla et al., 2013; Suh et al., 2007). TGF� is also
responsible for tumor recurrence through IL-8-dependent activa-
tion of cancer stem-like cells, as was shown in patients with breast
cancer (Bhola et al., 2013). EMT can also be initiated in
epidermal keratinocytes by ROS-stimulated TGF� secretion and
MAPK activation (Fukawa et al., 2012).

Therapeutic perspectives

Since TGF� plays dual roles in tumorigenesis, it would seem to be
an intriguing prospective therapeutic target. It was demonstrated
in several studies that loss of TGF� signaling is not tumorigenic
but can affect already pro-tumorigenic (inflammatory) micro-
environments. Conversely, over-expression of TGFB genes is
commonly associated with progression of aggressive tumors with
pro-metastatic potential and poor patient prognosis. Many
neutralizing antibodies and molecular inhibitors that suppress
tumor-promoting functions of TGF� have been discovered so far.
However, it is very important to design drugs that do not affect the
normal tumor suppressive properties of TGF� (Kim et al., 2008).

Several clinical studies proved that TGF� therapy can be safe
and effective (Bogdahn et al., 2011; Schlingensiepen et al., 2011).
The main advantages for reducing TGF� are reported as a better
host immune surveillance and better prognosis for patients after
radio- or chemotherapy (Biswas et al., 2007). TGF� modulation
also has effects on TM, i.e. it induces T-cell-mediated anti-tumor
responses by causing an increased infiltration of NK cells and
T-cells into the TM. TGF� also helps to reduce the suppressive
capacity of Treg cells and to decrease production of IL-17 that
inhibits apoptosis in tumor cells (Nakamura et al., 2001; Nam
et al., 2008). Another study showed that even SMAD4-deficient
tumors could be treated by TGF� therapy, suggesting pro-
tumorigenic functions of TGF� depend on complex TGF�
signaling in the TM (Zhong et al., 2010). Immunotherapy with
TGF� and tumor necrosis factor (TNF)-� antagonists was found
to be able to restore production of interferon (IFN)-� by tumor-
associated DC, resulting in anti-tumor responses (Sisirak et al.,
2013).

MED12, a key component of transcription MEDIATOR
system, has become a new target for therapy. MEDIATOR is a
protein system that integrates and transduces positive and
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negative regulatory information, from enhancers and operators to
promoters, functioning through RNA polymerase II with modu-
lation of its activity in promoter-dependent transcription (Myers
& Kornberg, 2000). In vitro experiments showed that loss or
suppression of MED12 is associated with EMT and drug
resistance due to activation of T�RII. MED12�/� cells treated
by TGF� signaling inhibitors displayed restoration of drug
responsiveness (Huang et al., 2012). Xu et al. (2014b) designed
an experiment based on nanotechnology principles. Anti-TGF�
small interfering RNA was nanoparticle-delivered into the late-
stage TM. This administration down-regulated TGF� production,
leading to enhanced therapeutic effects of a vaccine against
melanoma tumors in C57BL/6 mice (Xu et al., 2014b).

Despite all the positive effects of TGF� modulation, Achyut
et al. (2013) discovered that abrogation of TGF� signaling in
stromal cells of Tgfbr2fspKO mice increased expression of various
inflammatory mediators (e.g. iNOS and cyclooxygenase 2),
inducing genetic damage, and proliferation in the neighboring
epithelial compartment. Expression of the downstream mediator
of p53, Cdkn1a/p21 (p21), was reduced. This, when taken
together with the increases in inflammation and inflammatory cell
infiltration, could also enhance tumor progression. The different
effects of TGF� therapy highlight the fact that the TM is a very
complex system (Burkholder et al., 2014). This brings up new
challenges to more precisely recognize further roles for TGF� in
the TM as well as its different expressions and activities in
relation to the various stages of tumors and TM evolution
(Zarzynska, 2014).

Conclusions

TGF� signaling is a fundamental pathway for normal develop-
ment and functions of mature cells. TGF� ligands are widely
expressed in all tissues of the body. However, TGF� is also an
important factor in the tumorigenesis network. Interestingly,
TGF� plays both tumor- suppressive and -promoting roles. It is
evident that cross-talk between different cells in a TM is essential
for cancer progression and that TGF� is a potent regulator of this
cross-talk. It regulates tumor progression by mutual interactions
between various components of TM, including fibroblasts,
epithelial cells, stromal cells, immune cells, etc. An increase in
the pro-metastatic capacity of tumor cells is induced through the
EMT, yet also regulated by TGF� signaling. These facts have led
to a strong effort to target TGF� in anti-tumor therapy; various
very promising drugs that have been discovered so far. Despite
this success, the exact roles of TGF� in the TM still need further
elucidation not only to permit the better design of new therapeutic
approaches, but to also more precisely define strategies for
intervention.
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