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Abstract.
Background: Some promising treatments for Huntington’s disease (HD) may require pre-clinical testing in large animals.
Minipig is a suitable species because of its large gyrencephalic brain and long lifespan.
Objective: To generate HD transgenic (TgHD) minipigs encoding huntingtin (HTT)1–548 under the control of human HTT
promoter.
Methods: Transgenesis was achieved by lentiviral infection of porcine embryos. PCR assessment of gene transfer, observations
of behavior, and postmortem biochemical and immunohistochemical studies were conducted.
Results: One copy of the human HTT transgene encoding 124 glutamines integrated into chromosome 1 q24-q25 and successful
germ line transmission occurred through successive generations (F0, F1, F2 and F3 generations). No developmental or gross
motor deficits were noted up to 40 months of age. Mutant HTT mRNA and protein fragment were detected in brain and peripheral
tissues. No aggregate formation in brain up to 16 months was seen by AGERA and filter retardation or by immunostaining.
DARPP32 labeling in WT and TgHD minipig neostriatum was patchy. Analysis of 16 month old siblings showed reduced
intensity of DARPP32 immunoreactivity in neostriatal TgHD neurons compared to those of WT. Compared to WT, TgHD boars
by one year had reduced fertility and fewer spermatozoa per ejaculate. In vitro analysis revealed a significant decline in the
number of WT minipig oocytes penetrated by TgHD spermatozoa.
Conclusions: The findings demonstrate successful establishment of a transgenic model of HD in minipig that should be valuable
for testing long term safety of HD therapeutics. The emergence of HD-like phenotypes in the TgHD minipigs will require more
study.

Keywords: Huntington’s disease, mutant huntingtin, minipigs, large animal model, lentiviral transgenesis, FISH analysis, mRNA
and protein expression, immunohistochemistry, DARPP32, AGERA assay, TR-FRET assay, spermatozoa

ABBREVIATIONS

AGERA Agarose gel electrophoresis for
resolving aggregates

HD Huntington’s disease
HTT Huntingtin
TgHD Transgenic HD
TR-FRET Time-Resolved Förster Resonance

Energy Transfer

INTRODUCTION

Huntington’s disease (HD) is an inherited auto-
somal dominant neurodegenerative disorder with a
worldwide prevalence of 3–10 affected individuals per
100,000 persons in Western Europe and North Amer-
ica [1, 2]. Progressive impairment of motor, emotional
and cognitive functions [3, 4] is a consequence of the
expansion of the CAG repeat stretch in exon 1 of the
gene encoding huntingtin (HTT) protein [5]. The onset
and the severity of HD correlates inversely with CAG
repeat number [6]. The current pharmacotherapy of
HD provides improvement of symptoms but no treat-
ment is available to stop disease progression [7, 8].

Animal models are important tools to evaluate ther-
apies for neurodegenerative disorders. Models of HD
in rodent, Drosophila, C. elegans, and non-human pri-
mate have been generated. In general, each of these
models shows some biochemical and neuronal features
similar to HD in humans [2, 3]. Rodent and fly mod-

els of HD have been very useful for understanding the
molecular basis for behavioral and neuronal abnormal-
ities [2]. Although rodent models of HD that express
either truncated [9–11] or full-length [12, 13] human
mutant HTT display differences in onset and severity
of phenotypes, these models collectively have pro-
vided valuable information related to target validation
and drug therapy. However, the rodent’s small brain
size and differences in neuroarchitecture to humans
limits their use for detailed neuroanatomic character-
ization associated with HD [14–17] and for adapting
methods such as non-invasive imaging that are used in
human clinics [18–20]. Large HD genetic models such
as sheep [21] and the non-human primate [22] have
been generated to help address these problems.

Pigs, and mainly minipigs, represent an optimal
model for preclinical drug trials and long-term safety
studies [20, 23–26]. This species has a physiology
resembling in several aspects that of humans [27–29].
The large size of the pig brain permits detailed iden-
tification of brain structures by imaging techniques
such as PET [30–32] and MRI [33–39]. There has
been recent progress in defining the porcine genome
[40–43], porcine single nucleotide polymorphisms
[44], microRNAome [45–47], and improved tech-
niques for genetic modification of pigs [48–51]. The
porcine homologue of the huntingtin gene has a large
ORF of 9417 nucleotides encoding 3139 amino acids
with a predicted size of 345 kDa (GenBank, Accession
No. AB016793). There is a 96% similarity between



M. Baxa et al. / Transgenic Minipig Model of HD 49

the porcine and human huntingtin genes (GenBank,
Accession No. AB016794). The number of CAG
repeats in the porcine HTT gene is polymorphic, rang-
ing from 8 to 14 units, and falls within the range of
the normal human huntingtin gene [52]. Similar to
humans, miniature pig possesses two HTT transcripts
of approximately 11 and 13 kb [52, 53]. The similari-
ties between porcine and human huntingtin genes and
proteins have provided further impetus to use the pig
as a model of HD [20, 54].

Recently, a cloning strategy was used to generate
a transgenic HD minipig. Unfortunately, this porcine
model suffered frequent perinatal mortality for reasons
that are unclear [55]. Here we used a strategy based
on lentiviral infection of porcine embryos and report
the successful germ line transmission through succes-
sive generations (F0, F1, F2 and F3 generations) of a
HD transgene encoding the first 548 aa of HTT with
124 glutamines under the control of human HTT pro-
moter. Mutant protein expression is detected in both
CNS and non-CNS tissues and in brain is comparable
to the endogenous huntingtin. DARPP32 immunore-
activity in a 16 month old TgHD minipig was reduced
compared to a WT sibling. At about one year of age,
sperm number and oocyte penetration were severely
affected in TgHD minipigs. These findings suggest
that we have in hand a suitable large animal model
for evaluating potential HD therapeutics.

MATHERIALS AND METHODS

Supplementary data

Supplementary Data (S1 –S8) are placed on the web-
site of The Institute of Animal Physiology and Genet-
ics, v.v.i.: www.iapg.cas.cz/CentrumPIGMOD/JHD

Minipigs

The Institute of Animal Physiology and Genetics
in Libechov imported the first miniature pigs in 1967
from the Hormel Institute, University of Minnesota
(two boars and three sows) and from the Institute
for Animal Breeding and Genetics, University of
Göttingen, Germany (two boars and four sows). Since
then breeding, animal health and body shape have
been thoroughly controlled and outbreeding conditions
maintained by import of several additional boars from
Göttingen [29]. Through continuous selection there has
been an increase in the average litter size (now about
6–8 piglets) and maintenance of a white color, which
has enabled the study of epidermal stem cells [56].

The animals were bred beginning at about 5 months
of age when they reach sexual maturity. At this stage
they weigh about 12–15 kg. In our minipig colony
longevity is unknown because animals are housed for
a maximum of about 8 years. However, the survival of
parental minipig breeds (Hormel and Göttingen) has
been reported to be 12 to 20 years. In this study, as
is standard practice, the gilts (sexually mature, reg-
ularly estrous cycling minipig females) and weaned
sows were housed in groups of 3–4 minipigs, and boars
were kept individually. The regular estrous cycle (20
days) facilitated reproductive experiments.

All components of this study were carried out in
accordance with the Institutional Animal Care and
Use Committee of Institute of Animal Physiology and
Genetics, v.v.i. and conducted according to current
Czech regulations and guidelines for animal welfare
and with approval by the State Veterinary Adminis-
tration of the Czech Republic. The ample body size
of the minipigs made feasible all surgical and laparo-
scopic approaches and their execution in a timely way.
General anesthesia of minipigs was induced by TKX
mixture (Tiletaminum 250 mg, Zolazepamum 250 mg,
Ketamine 10% 3 ml, Xylazine 2% 3 ml) in a dose of
1 ml per 10 kg of body weight for experimental proce-
dures including embryo transfer and oocyte collection.
All surgery was conducted under sterile conditions in
a standard surgical room. Postoperative care included
treatment with analgesics and antibiotics. Animals
were housed separately during recovery from anesthe-
sia and then returned to the animal colony. Profound
barbiturate anesthesia (Thiopental Valeant, 1g, i.v.)
was used for transcardial perfusions.

Construction and production of the
HIV1-HD-548aaHTT-145Q vector and
verification of vectors in vitro

N-terminal truncated form of human huntingtin
was created from the plasmid pFLmixQ145 com-
prising human full-length HTT cDNA with 145
CAG/CAA repeats (obtained from Coriell Cell Repos-
itories, Camden, NJ). The first 548 aa of huntingtin
(ending with residues AVPSDPAM) and including
145 Q was ligated with the HD promoter and
inserted into the backbone plasmid pHIV7, which
contained cPPT and WPRE cis-enhancing elements.
Lentiviral vectors were produced by transient co-
transfection of HEK293T cells. HIV1-CMV-EGFP
vector (1 × 109 IU/ml) was used as the standard (See
Supplementary Data S1 for details). Transgene expres-
sion was tested on porcine differentiated neural stem

www.iapg.cas.cz/CentrumPIGMOD/JHD
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cells. Subsequently, transduction potential of lentivi-
ral vectors was evaluated using porcine zygotes.
Matured porcine oocytes were laparoscopically aspi-
rated from pre-ovulatory follicles. After IVF, embryos
at pronuclear stage were microinjected with 10–20 pl
of HIV1-CMV-EGFP construct into the perivitelline
space and cultured into the blastocyst stage in vitro
(See Supplementary Data S2 for details).

Transgenesis

Gilts were synchronized by Regumate (Jenssen
Pharmaceuticals) (5 donors and 3 recipients per
experiment). Donor females were superovulated by
administration of pregnant mare’s serum gonadotropin
(PMSG) (Intervet International B.V.) and ovulation
was induced by GnRH (Intervet International B.V.).
After mating with the boars, pronuclear stage embryos
were flushed from oviducts and microinjected into the
perivitelline space with HIV1-HD-548aaHTT-145Q
lentiviral vector (50–100 viral particles per zygote).
The injected embryos were laparoscopically trans-
ferred into the fallopian tubes of recipients (See
Supplementary Data S3 and S4 for details).

Genotyping

Biopsies of porcine skin were used to obtain DNA
which was purified using DNeasy Blood & Tissue kit
(Qiagen). The presence of the transgene was deter-
mined by PCR amplification of the region containing
the WPRE coding sequence within the transgene
(254 bp amplicon). Each PCR reaction contained
0.75 ng/�l of purified gDNA in 20 �l of reaction mix-
ture and underwent 32 cycles of amplification (94◦C
for 30 s, 56◦C for 40 s, 72◦C for 40 s) following an
initial 3 min denaturation period. SELK gene (360 bp
amplicon) was used as an endogenous control. Primer
sequences:

WPRE Fwd: 5′ GAGGAGTTGTGGCCCGTTG
TCAGGCAACG 3′
WPRE Rev: 5′ AGGCGAGCAGCCAAGGAAA
GGACGATG 3′
SELK Fwd: 5′ ACAGGCCCAAACTAATAAGAG
3′
SELK Rev: 5′ CAAATTTGGAGCCTTTTGT 3′

Fluorescent in situ hybridization

The localization of transgenes within the porcine
genome was detected by Fluorescence in situ
hybridization (FISH) analysis [57]. Mutant HTT

sequence from the recombinant plasmid (HIV1-HD-
548aaHTT-145Q) was labeled with biotin-16-dUTP
(Roche Diagnostics GmbH) using a nick transcrip-
tion kit (Abbott). The resulting probe did not detect
the endogenous porcine HTT gene. Immunodetection
and amplification were performed using avidin-FITC
and anti-avidin-biotin. Chromosomes were counter-
stained with propidium iodide and DAPI. Karyotyping
was determined using image analysis of reverse DAPI
banding.

Microdissection of chromosomes and analysis of
copy number variation

The incorporation of transgenic HTT into the q
arm of chromosome 1 was confirmed by microdis-
section of q arms of both chromosomes 1 followed
with a non-specific degenerate oligonucleotide-primed
(DOP) PCR. 2 �l of DOP PCR amplification product
were used as a template to carry out PCR amplification
of the transgene.

Primer sequences:

MDS Fwd: 5′ TTCATAGCGAACCTGAAGTC 3′
MDS Rev: 5′ TTGTGTCCTTGACCTGCTGC 3′

The number of copies of the transgenes inte-
grated into the porcine genome was determined using
relative comparison of quantitative DNA amplifica-
tion between the endogenous porcine HTT and the
transgenic human HTT. HTT primers and probe 6-
carboxyfluorescein, (6-FAM, TaqMan Probe, Applied
Biosystems) were designed to detect HTT of both
species. ACTB (VIC, TaqMan Probe, Applied Biosys-
tems) was used as a reference gene. Each multiplex
qPCR reaction was performed in a reaction volume
of 20 �l using TaqMan Gene Expression chemistry
(ROX passive reference, Applied Biosystems) using 75
cycles of amplification (30 s at 94◦C, 30 s at 51.1◦C,
30 s at 72◦C) following an initial 3 min denaturation
period. The qPCR data were analyzed using LinReg-
PCR software [58].

The sequences of the oligonucleotides:

HTT TaqMan MGB Probe: 6-FAM-TCTGCGTC
ATCACTGC-MGBNFQ
HTT Primer Fwd: 5′ CTTCTGGGCATCGCTATG
3′
HTT Primer Rev: 5′ CATTCGTCAGCCACCATC
3′
ACTB TaqMan MGB Probe: VIC-AGTCCCTG
CCTTCCCAAA-MGBNFQ
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ACTB Primer Fwd: 5′ GTCATTCCAAGTATCAT
GAGATG 3′
ACTB Primer Rev: 5′ TGGAGTACATAATTTA
CACTAAAGC 3′

Determination of glutamine number in human
mutant huntingtin

The number of glutamines in human mutant HTT
was determined by PCR using primer pairs that flanked
the region of the CAG/CAA repeat. The length of
the PCR fluorescently labeled product was detected
using Fragment analysis on an Applied Biosystems
3130 Genetic Analyzer. Samples were separated in gel
polymer POP-7 gel at 60◦C using LIZ 600 size stan-
dard. Data analysis was performed by GeneMapper®

software.
Primer sequences:

HD1: 5′ ATGAAGGCCTTCGAGTCCCTCAAGT
CCTTC 3′ (6-FAM)
HD3pig: 5′ CGGCGGCGGTGGCGGTTGCTGT
TGCTGCTG 3′

PCR protocol: 95◦C for 5 min, followed by 40 cycles
of denaturation at 94◦C for 30 s, annealing at 70◦C
for 30 s and elongation at 72◦C for 30 s with a final
extension of 3 min.

Detection of mRNA expression of mutant human
HTT

Purified RNA was obtained from cultured porcine
skin fibroblasts using RNeasy Plus minikit (Qiagen).
RT PCR amplification was performed in a reac-
tion mixture containing 2.0 ng/�l of total RNA with
reaction volume of 20 �l. The primer set for RNA
huntingtin insert (1446 bp amplicon) was designed
using Beacon Designer. ACTB (∼100 bp amplicon,
PrimerDesign Ltd) was used as a reference gene. The
HTT amplification was performed in one step starting
with reverse transcription at 50◦C for 30 min and denat-
uration at 95◦C for 15 min, followed by 50 cycles of
denaturation at 94◦C for 45 s, annealing at 56◦C for 45 s
and elongation at 72◦C for 95 s with the final extension
of 2 min. The amplification of ACTB reference gene
was performed in a one-step reaction (50◦C for 30 min,
95◦C for 15 min, followed by 35 cycles of amplification
at 94◦C for 45 s, 61◦C for 30 s and 72◦C for 30 s with
the final extension of 3 min. Reaction mixtures miss-
ing reverse transcriptase were included for each animal
sample to exclude the possibility of contamination with
genomic DNA.

Primer sequences:

HTT RNA Fwd: 5′ GAAACTTCTGGGCATCGC
TATG 3′
HTT RNA Rev: 5′ GAAAGCCATACGGGAAG
CAATAG 3′

Biochemical assays

Eight minipigs at the age of 4 (N = 4), 10 (N = 2) and
16 months (N = 2) from F2 generation (4 TgHD + 4
WT) were perfused under deep anesthesia with ice-
cold PBS. The left hemisphere of each perfused
brain was dissected and used in biochemical assays
(SDS-PAGE and Western blot and TR-FRET). Brain
and tissue biopsies were stored at –80◦C.

15 �g of total protein from crude homogenates
of TgHD minipig and WT littermates samples were
diluted by NuPage 4× LDS sample buffer (LifeTech
#NP0007) and 0.1 M DTT. Samples were loaded onto
3–8% Tris-acetate (LifeTech #EA03755) gel and run at
125 V in Tris-Acetate SDS Running Buffer (LifeTech
#LA0041) until the 30 kDa band of Novex Sharp pro-
tein standard (LifeTech #LC5800) had migrated to the
end of the gel. Gels were then immersed in trans-
fer buffer containing 1% SDS and 20% MetOH for
8 minutes and then transferred onto nitrocellulose
membrane (LifeTech #IB301001) using an iBlot gel
transfer device (LifeTech #IB1001) P3 for 8 min-
utes. Membranes were blocked with 5% milk for
30 min at RT (BioRad #170-6404) and probed with
anti-HTT antibody (Ab1, 1:1,000; [59]) overnight at
4◦C. Membranes were then incubated for 1 h at RT in
a 1:5,000 dilution of Peroxidase-conjugated Donkey
Anti-Rabbit secondary antibody (Jackson ImmunoRe-
search #711-035-152); followed by 5 min incubation
in Supersignal West Pico (Pierce #3408). Signal was
detected on autoradiographic film (GE Healthcare
#28906839). Membranes were stripped by Re-Blot
Plus Strong Solution (10×) (Millipore #92590) for
15 minutes at RT, blocked by 5% milk and re-probed
with anti-actin antibody in a 1:500 dilution (Sigma
#A4700). After 1 h incubation at RT in secondary Don-
key anti-Mouse antibody (Jackson ImmunoResearch
#715-0350150), detection was performed as described
above.

SDS-agarose gel electrophoresis for resolving
aggregates (AGERA) and Western blot analysis

The analysis of mutant HTT oligomers by SDS-
AGE and Western analysis was performed as described
previously [60–63]. 50 �g of total protein from
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crude homogenates of TgHD minipig samples were
diluted 1:1 into non-reducing Laemmli sample buffer
(150 mmol/l Tris-HCl pH 6.8, 33% glycerol, 1.2% SDS
and bromophenol blue). Purified ferritin (440 kDa) was
used as a high molecular weight size marker and pos-
itive indicator of migration and transfer of protein
(Sigma). Eight week old R6/2 mouse striatal tissue was
used as a positive control for mutant HTT oligomers
[63]. Samples were loaded onto 1% agarose gel con-
taining 0.1% SDS and run at 100 V in running buffer
(192 mM glycine, 25 mM Tris-base, 0.1% SDS) until
the bromophenol blue dye front had migrated 12 cm.
The gel was transferred onto PDVF membrane (Mil-
lipore) at 200 mA for 1 h in transfer buffer (192 mM
glycine, 25 mM Tris-base, 0.1% SDS, 15% MetOH)
using Semi-dry electroblotter model HEP-1 (OWL
Scientific). The thickness of the 1% gels decreased
substantially during transfer, so the electroblotter was
tightened periodically to ensure constant and even
contact between the gel sandwich and the electroblot-
ter. After transfer, the membrane was blocked for
1 h in StartingBlock™ T20 (TBS) Blocking Buffer
(Pierce) at room temperature and incubated in a 1:500
dilution of anti-HTT antibody (Millipore MAB5374,
EM48) overnight at 4◦C. The membrane was then incu-
bated for 1 h in a 1:10,000 dilution of Horseradish
peroxidase-conjugated anti-mouse secondary (Jackson
ImmunoResearch Laboratories) at room temperature
and signal was detected using Supersignal West Pico
(Pierce).

Filter retardation assay
The same homogenates used in the AGERA assays

were also analyzed for SDS-insoluble mutant HTT
by filter-retardation assay as previously described
[62–64]. 50 �g of homogenate were diluted in 0.1%
SDS and filtered through cellulose acetate membrane
(Schleicher & Schuell, 0.2 �m pore size) using a dot
blot filtration apparatus (Bio-Rad) and washed using
0.1% SDS. The blot was then blocked for 1 h in 5%
non-fat milk at room temperature and probed with
primary and secondary antibodies and developed as
described above.

TR-FRET quantitative analysis
TR-FRET (Time-Resolved Förster Resonance

Energy Transfer) quantification of soluble mutant
huntingtin was performed as previously described [65].
In short, 5 �l tissue sample homogenates and 1 �l
detection buffer (50 mM NaH2PO4, 400 mM NaF,
0.1% BSA and 0.05% Tween + detection reagents)
were added per well of a low-volume 384-well plate.

The labeled antibodies used for detection of solu-
ble mutant HTT were 2B7 bound to terbium cryptate
(TB) and MW1 bound to D2 fluorochrome. The final
amounts of antibodies were 1 ng 2B7-Tb and 10 ng
MW1-D2. After incubation for 1 h at room temper-
ature, samples were analyzed by excitation of the
Terbium donor at 320 nm. After a time-delay of 100 �s,
TB and D2 emission signals were detected at 620
and 665 nm with an Envision reader (PerkinElmer,
Switzerland). TR-FRET signals are presented as the
total protein normalized ratio of 665 nm signal divided
by 620 nm signal. This calculation benefits from the
internal signal intensity reference of the TB donor flu-
orescence, thereby providing a mutant HTT protein
signal corrected for potential assay-interfering artifacts
such as turbidity, light scattering or quenching capabil-
ity of the sample, differences in sample volume due to
slight pipetting variability, and day-to-day assay fluctu-
ation caused by differences in excitation lamp energy.

Immunohistochemistry

The right hemisphere of each perfused brain was
immersed in a fixative solution composed of 4%
paraformaldehyde (PFA) in phosphate buffer saline
(PBS, pH 7.4) for 5–6 days and then embedded in
HistOmere [66, 67] for 2–4 minutes in dorso-ventral
direction, so that the optic chiasm and mammillary
bodies were in horizontal position, and cut into 6 slabs.
Brain slab no. 2 contained the majority of the neostria-
tum. The brain slabs were post-fixed in 4% PFA for
another 7–10 days and then placed into 30% sucrose
containing 0.01% sodium azide. 40 �m thick coro-
nal brain sections were cut using a clinical cryostat
(Leica Biosystems, CM1950). The endogenous per-
oxidase activity was blocked with a solution of 0.3%
of hydrogen peroxide in MetOH for 20 min and the
free-floating sections were immunostained using the
following primary antibodies listed with dilutions and
sources: Ab1 (1:1,000, [59]), AB585 (1:500, [59]),
MW8 (supernatant, Hybridoma Bank, University of
Iowa, USA), mEM48 (1:50, MAB5374, Millipore) and
DARPP32 (1:15,000, ab40801, Abcam). Secondary
goat fluorescent antibodies (Alexa Fluor® 488, Alexa
Fluor® 555, Alexa Fluor® 647 from Invitrogen, Life
Technologies) were used for visualization of some
primary antibodies. Some sections were treated with
biotinylated secondary antibodies (1:400, Amersham,
Buckinghamshire, UK) followed by avidin-peroxidase
complex (1:400, A3151; Sigma-Aldrich). The avidin-
peroxidase complex was visualized by incubation with
DAB tablet (#4170, Kementec Diagnostics). The sec-
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tions were finally mounted with DePeX (Sigma).
Analysis was performed using a confocal microscope
equipped with 4 lasers (405, Argon, 561 and 633 nm
lasers) (SP5, Leica Microsystems), virtual microscopy
scanners (VS110®-5, Olympus, NanoZoomer 2.0-HT,
Hamamatsu) and a light microscope (Primo Star,
Zeiss).

Determination of the number and intensity of
DARPP32 + neurons

Images of regions of caudate and putamen were
obtained using the confocal microscope and a HCX
PL APO lambda blue 63.0 × 1.40 OIL UV objective
to detect DAPI staining. PMT setup, pinhole sizes (1
Airy) and contrast values were kept constant across
different sessions. The number of coronal sections
analyzed per caudate nucleus and putamen ranged
from 3–5 and 25 areas were scanned in each sec-
tion. Areas of analysis were sectioned in the z plane
in 1-micron optical sections (13–20 �m) using FiJi
software (http://fiji.sc) and only cells confirmed to
include the entire DAPI stained nucleus were included
in the analysis. This sampling method is an optical
dissector technique and minimizes sampling errors
(due to partial cells) and stereological concerns, as
minor variations in cell volumes do not influence
sampling frequencies [68, 69]. The DAPI staining in
DARPP32 labeled cells revealed nuclei of two dis-
tinct morphologies-large grainy nuclei mainly in the
caudate nucleus and smaller compact nuclei mainly in
putamen. Only cells with DARPP32 labeling and these
nuclear features were included in the analysis. A total
of 5,256 neurons in TgHD minipig and 3,644 neurons
in WT minipig were counted. All values were reported
as the number of neurons positive for immunoreactive
DARPP32 per mm3 tissue. In the same scanned areas
used for the cell based analysis the overall intensity of
DARPP32 signal was also measured. The average sig-
nal intensity was determined for all images in a stack
and expressed as the mean intensity.

Semen collection and penetration test

Semen samples from 2 transgenic boars of F1 gen-
eration (G117 and G118) and 3 wild type boars (F808,
F630, F719) were collected starting at age 12 months
and periodically over 14 months. Five and 18 sam-
ples were taken for the WT and 16 and 18 for the
TgHD minipigs. Total number of spermatozoa per
ejaculate was estimated by Sperm Class Analyzer
(Microptic, Spain). Differences in the number of sper-

matozoa between individual boars were analyzed using
Kruskal-Wallis test followed by Mann-Whitney U
test for the post hoc comparison. Values of p < 0.05
were considered significant. The spermatozoa were
prepared for in vitro penetration test by double centrifu-
gation (20 min/600 g, 10 min/600 g) and the following
swim-up procedure [70] provided about 1 × 106 cells
for in vitro fertilization. The cycling minipig gilts
were synchronized by Regumate (Jenssen Pharmaceu-
ticals) and superovulated by administration of PMSG
(Intervet International B.V.). Ovulation was inducted
by GnRH (Intervet International B.V.). The oocyte-
cumulus complexes were isolated from large antral
follicles 72 h after PMSG injection at the germinal
vesicle stage and they were cultured for 40–44 h up
to metaphase II with the first polar body [70]. In 13
independent experiments, oocytes with intact zona pel-
lucida were used. In some experiments, the zona pellu-
cida was removed by incubation with 0.25% pronase.
After 24 h of incubation with spermatozoa, oocytes
were mounted on slides, fixed in acetic-alcohol, stained
with acetic-orcein and examined with phase contrast
microscopy. The penetration rate into matured pig
oocytes was recorded. Differences among individuals
in penetration rate were analyzed using Kruskal-Wallis
test followed by Mann-Whitney U test used for the post
hoc comparison between individual boars and values
of p < 0.05 were considered significant.

RESULTS

Generation and characterization of TgHD minipig

The HIV1 backbone plasmid pHIV7, which contains
cPPT and WPRE cis-enhancing elements (Supplemen-
tary Data S1), was used for the construction of a
lentiviral vector carrying the sequence of the first 548
amino acids of human HTT protein containing 145
glutamines under the control of human HD promoter
(Fig. 1A). The transduction potential of the lentiviral
construct was verified on porcine zygotes using the
HIV1-CMV-EGFP construct. Efficient transduction of
porcine embryos was confirmed by the presence of
EGFP fluorescence in embryoblasts and trophoblasts
(Supplementary Data S2).

The TgHD minipigs were generated by using
microinjection of HIV1-HD-548aaHTT-145Q con-
struct into the perivitelline space of the one-cell stage
porcine embryos (Supplementary Data S3). Twenty-
nine injected zygotes were transferred to recipient
sows via laparoscopy (Supplementary Data S4). After
standard duration of gravidity (115 days), the first

http://fiji.sc
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Fig. 1. Molecular characterization of TgHD minipigs. (A) Schematic of the first 548aa of human HTT cDNA fragment with the stretch of 145
glutamines ligated to human HTT promoter in the pHIV7 backbone. WPRE primer set (gDNA amplicon) was used for genotyping the animals.
548aaHTT primer set (mRNA amplicon) was used for confirmation of mRNA expression. (B) PCR of the human HTT and WPRE region
(TgHTT) shows presence of transgene in porcine DNA. Amplification of SELK gene (360 bp amplicon) was used as control for the quality of
DNA. (C) Expression of mRNA by RT PCR amplification of 1446 bp long amplicon spanning the region encoding human HTT and WPRE
region. Amplification of actin mRNA (ACTB) was used as a control for RNA quality. Reaction mixtures without reverse transcriptase were
included for each animal sample to exclude the possibility of genomic contamination (data not shown). Plasmid DNA with 548aaHTT-145Q
construct was used as a positive control. WT pig genomic DNA and mRNA and ddH2O were used as negative controls. Generation (F0, F1, F2)
is indicated just for TgHD animals.

HIV1-HD-548aaHTT-145Q manipulated piglets were
born. One gilt (F807) in a litter of 6 live newborns was
transgenic. Two non-transgenic piglets died within 48
hours after birth (Fig. 2). The number of transgenic
animals when expressed as a proportion of the num-
ber of live births or as a proportion of microinjected
zygotes was 16.7% or 3.5%, respectively.

The F0 transgenic gilt was mated with its non-
transgenic littermate to produce F1 generation. In the
two litters of 17 newborns, five piglets were transgenic
(Fig. 2). Germ line transmission to the F1 generation
was 29.4%. F1 transgenic boars were sexually mature
at the expected age of five months and they successfully
produced offspring.

Of 92 F2 piglets born from seventeen litters – 73
survived (20.7% perinatal mortality) and 37 of these
were transgenic (TgHD, black symbols, Supplemen-

tary Data S5) resulting in a 40.2% F2 generation
transgenesis rate per born piglet. The number of piglets
in a litter and newborn mortality was comparable
between offspring of TgHD and WT animals (Supple-
mentary Data S6). The proportion of TgHD and WT
piglets in F2 generation were comparable, enabling
creation of optimal experimental groups (TgHD vs.
WT animals).

Five transgenic boars and one TgHD female of the
F2 generation were bred and a total of 51 live WT and
30 live TgHD piglets were obtained from 23 litters.
The incidence of perinatal mortality in F3 generation
was 14.2% and the rate of transgenesis was 34.9%.

The F0 transgenic sow was also mated with an F1
transgenic boar. Four transgenic piglets were born in
two litters (Supplementary Data S5). No homozygote
TgHD transgenic offspring were obtained.
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Fig. 2. Breeding and pedigrees of TgHD minipigs. Black boxes (males) and black circles (females) represent animals positively tested for the
transgene in DNA extracted from biopsy of ear tissue. “/” denotes a dead minipig within the first 48 hours; “X” indicates an animal sacrificed
for biochemical and microscopic studies. The F0 minipig gave birth to 5 TgHD piglets in two litters. Mendelian inheritance is indicated in the
F2 generation.

DNA and RNA analysis

Genotyping was performed using PCR as described
in Methods. Figure 1B demonstrates TgHD minipigs
in F0, F1 and F2 generations. Expression of mRNA
was confirmed by RT PCR amplification of the region
encoding human HTT and WPRE region (Fig. 1C). To
confirm mRNA expression of the full insert, primers
were designed for amplification of the 1446 bp product
from the 548aa HTT transgene. mRNA of mutant hunt-
ingtin was transcribed in all TgHD minipigs. Mutant
HTT gene was detected by FISH analysis on chro-
mosome 1 (1q24-q25) in animals from the first three
generations (Fig. 3A). Microdissection of q arms of
chromosomes 1 followed with non-specific DOP PCR
confirmed the presence of the transgene in chromo-
some 1. Chromosomes 6 and 13 were used as negative
controls (Fig. 3B).

Quantitative PCR was used to detect the presence
of both endogenous wild type HTT gene and the
mutant HTT transgene in the porcine genome. Assum-
ing the presence of the two endogenous porcine HTT
alleles, all the transgenic animals integrated 1 copy
of the transgene in their genome (Fig. 3C). Further-
more, fragment analysis of the PCR amplicons of
the DNA fragment containing CAG/CAA sequence
showed that the integrated transgene was in frame and
consisted of 124 CAG/CAA instead of the original 145
(Fig. 3D).

Development and behavior of TgHD minipigs

The development and behavior of the TgHD minip-
igs from F0, F1, F2 and F3 generations appeared
comparable to WT. TgHD piglets looked normal at
birth, were able to stand within a few minutes and their
size was similar to each other and to WT. Social domi-
nance relationships among the WT and HD littermates
began forming two days after birth and as expected,
changed as a consequence of weaning and sexual matu-
rity. TgHD and WT animals of both sexes became
sexually mature at the expected age of 5 months and
were able to produce offspring. We noticed a decline in
the fertility of the F1 generation TgHD boars beginning
at about 12 months (see below). Motor deficits charac-
teristic of HD were not evident in the TgHD animals.
Lateral eye movements were smooth and vertical gaze
movement was similar to WT minipigs. Saccades were
not slow, facial praxis was normal, and vocalization
had a normal rhythm. No involuntary movements were
observed. A qualitative rating scale was developed to
evaluate stance, gait, and ability to cross a barrier in
TgHD and WT animals starting at age 3 months and
at monthly intervals up to 30 and 40 months of age. A
rating of 0 was normal and 3 was the most impaired
(see Supplementary Data S7 for details). Using this
rating scale, there was no difference in score for stand-
ing, gait, or crossing a barrier between WT (score = 0)
and F0 TgHD minipigs (F807) up to 40 months and F1
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generation minipigs (G117, G118, and G122) up to 30
months of age (Scores = 0).

Expression of mutant huntingtin protein

Brain lysates were obtained from two 4 month old
F2 TgHD minipigs and two WT minipigs. SDS-PAGE
and Western blot analysis was performed as described
in methods using antibody Ab1 to detect HTT. Mutant
HTT protein fragment was detected in all regions of the

CNS examined including motor cortex, putamen, cau-
date nucleus, hippocampus, hypothalamus, thalamus,
cerebellum, and spinal cord (Fig. 4A top for one WT
and one TgHD). Mutant HTT fragment migrated at the
expected size of 120 kDa. Peripheral tissues including
small intestine, lung, liver, kidney, ovaries and skin
also expressed the TgHD protein whereas little or no
transgenic HTT was present in stomach, heart, skeletal
muscle and spleen (Fig. 4A bottom). With some excep-
tions (for example, hypothalamus), the densitometry
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analysis showed that the levels of mutant HTT frag-
ment in different brain regions were comparable to the
levels of the endogenous porcine huntingtin seen on the
same blots (see scatterplot, Fig. 4B). Further Western
blot analysis of caudate nucleus and cerebellum was
performed in frozen samples of brain from 8 minipigs
(4 TgHD and 4 WT) ages 4, 10 and 16 months. Results
showed that the mutant protein fragment was detected
in the TgHD minipigs at all ages. The signals for the
mutant protein migrated more broadly in SDS-PAGE
in the caudate and cerebellum of the 10 and 16 months
old minipigs than in the samples from the 4 month
old minipig (Fig. 4C). Whether this characteristic of
migration is related to an altered property of mutant
HTT is unclear.

We quantified the levels of soluble mutant HTT in
CNS and peripheral tissues of two sibling pairs of
TgHD and WT minipigs using TR-FRET as described
in Methods. Results in all brain and spinal cord regions
and some peripheral tissues (lung, spleen, kidney,
ovaries) showed robust HTT signal in TgHD animals
compared to WT minipigs suggesting the assay was
detecting mutant HTT (Fig. 5). To determine the pres-
ence of aggregated mutant HTT in TgHD minipig
brain, AGERA and filter retardation assays were
applied. Homogenates from motor cortex, putamen,
caudate nucleus and cerebellum of WT and TgHD 16
month old minipigs were tested with mEM48 antibody.
Based on these assays, aggregated mutant HTT was not

present in the brain of TgHD minipig but was detected
as expected in the brain of the R6/2 HD mouse (Fig. 6).

Immunohistochemistry of WT and TgHD brains

HTT immunoreactivity was examined by the
immunoperoxidase method in the 4 month old minipig
brain at the levels of the neostriatum using anti-HTT
antibody Ab1 which detects HTT1–17. The cortex,
caudate nucleus and putamen showed HTT immunore-
activity. Within these regions the gray matter was more
strongly labeled than the white matter (Fig. 7). Con-
sistent with findings in mice and human brain [71],
endogenous HTT in WT minipig strongly localized
to somatodendritic regions of cortical neurons and to
cell bodies of neostriatal neurons. Neuropil of cor-
tex and neostriatum was also strongly labeled. The
other anti-HTT antibody which detected endogenous
huntingtin in WT minipig was AB585, which was
made to HTT585–725 [59]. There was no difference
in the intensity of staining for HTT in TgHD minipig
compared to WT minipig with anti-HTT Ab1. No
nuclear inclusions were detected in the TgHD brain
even though Ab1 antibody detects nuclear inclusions
in the human HD cortex [72]. Antibodies MW8 and
mEM48 are known to detect nuclear aggregates in
other HD animal models but did not produce any stain-
ing in the TgHD minipig. Similarly no labeling was
detected with MW8 in the 16 month old TgHD pigs.

Fig. 5. TR-FRET analysis of soluble HTT protein in F2 WT and TgHD minipig. Bar graph shows results of TR-FRET analysis of soluble
mutant HTT protein in TgHD and WT tissue samples (isolated from 4 month old minipigs) expressed as mutant HTT signal per 1 mg/ml total
protein. Results of TR-FRET quantitative analysis correlated with western blot analysis shown in Fig. 4B.
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Fig. 6. Biochemical assays for detection of aggregated mutant HTT. AGERA and Filter retardation assays were performed as described in
Methods using tissue from different brain regions of WT and TgHD minipig and R6/2 HD mouse. Membranes were probed with mEM48
antibody. Only R6/2 sample shows signal in both assays.

Fig. 7. HTT localization in the brain of WT and TgHD minipig. Shown are coronal sections of 4 month old WT minipig brain on the left
and TgHD minipig brain on the right labeled using the immunoperoxidase method to detect HTT with anti-HTT1–17 (Ab1). Boxed regions
of the cingulate cortex and the putamen are shown in images to the right of each section. HTT immunoreactivity has a strong somatodendritic
localization in WT and TgHD cortex and in somata of medium sized neostriatal neurons. There is no obvious difference in labeling between
WT and TgHD neurons. Scale bars 100 �m.

DARPP32 is highly localized to neuronal cell bodies
and processes of the normal rodent and human neos-
triatum. A decline in DARPP32 immunoreactivity in
the neostriatum is characteristic of HD mice [73, 74].
Immunoperoxidase labeling for DARPP32 in the neos-
triatum of F2 generation 16 month old WT and TgHD
minipigs showed intense labeling in neuronal cell bod-
ies and neuropil (Fig. 8A–D). Some areas of less
intense DARPP32 neuropil staining were present and
may be striosomes, which have been described using
other neuronal markers in rodent and human striatum

[75, 76] (Fig. 8B, D). Immunofluorescence analysis of
caudate and putamen of F2 WT and TgHD minipigs
at ages 4, 10 and 16 months also showed DARPP32
robustly expressed in neostriatal neurons and neuropil
(Fig. 9A–C, shown for 16 months). A quantitative
stereology analysis was performed in the sibling pair of
16 month old minipigs. Results showed that the median
number of DARPP32 + neurons per mm3 in caudate
and putamen of the TgHD minipig was slightly lower
compared to the WT (TgHD: 24,781 caudate neurons
and 22,351 putamen neurons, and WT: 26,846 caudate



60 M. Baxa et al. / Transgenic Minipig Model of HD

neurons and 23,863 putamen neurons) (Fig. 9C). In
the TgHD brain there were reduced signal intensities
for DARPP32 labeling in the caudate nucleus (11.3%
reduction) and putamen (31.7% reduction) compared
to the WT sibling. Although these data are highly pre-
liminary and need confirmation in additional minipigs,
the results suggest that by 16 months of age the levels
of DARPP32 in TgHD minipig start to decline.

Analysis of reproductive capacity in TgHD boars

The number of spermatozoa per ejaculate was sys-
tematically evaluated in the transgenic boars from the
age of 13 months to 26 months. There was a signif-
icant decline in the median number of spermatozoa
in TgHD minipigs (2.45–3.65 × 109 of spermatozoa)
compared to WT (8.15–12.48 × 109 of spermatozoa)
(Fig. 10A, Kruskal-Wallis test p < 0.001 followed by
post-hoc Mann-Whitney U, p < 0.01).These data sug-
gest an impairment of spermatogenic production of the
testes of TgHD minipigs. A time course analysis of

the TgHD sperm samples showed that sperm number
was reduced at 13 months and remained low up to 26
months (Supplementary Data S8). IVF assay showed
that in WT oocytes with zona pellucida intact, the num-
ber of TgHD spermatozoa that penetrated the oocyte
was lower than for the WT spermatozoa (Fig. 10B).
The median percentage of WT oocytes that were
penetrated by TgHD spermatozoa was significantly
lower than WT oocytes penetrated by WT spermatozoa
(Kruskal-Wallis test p < 0.001 followed by post-hoc
Mann-Whitney U, p < 0.05) (Fig. 10C). These results
indicated that the penetration activity of spermato-
zoa in TgHD boars was impaired compared to those
of WT spermatozoa. To investigate the basis for the
impaired penetration rate in TgHD, WT oocytes with
zona pellucida removed were used for further analysis.
Removing the zona pellucida markedly increased pen-
etration rate in the WT and TgHD groups to 100% level
(Fig. 10D). These findings suggest that the presence of
the HTT gene interferes with the penetration of TgHD
spermatozoa through the zona pellucida but does not

Fig. 8. DARPP32 immunoreactivity with immunoperoxidase method in 16 month old F2 WT and TgHD minipig brain. (A and C) Coronal
sections through the neostriatum of WT (A) and TgHD (C) minipig show intense labeling for DARPP32 in the caudate nucleus and putamen
and in the basal forebrain. Boxed areas are shown at higher magnification in B and D. (B and D) Higher magnification images show the intense
labeling of neuropil and cell bodies. Areas of weaker neuropil labeling are demarcated by a dashed line and asterisk in the center and may
represent striosomes. Scale bars in A and C are 5 mm and in B and D are 500 �m.
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interfere with fusion of the post-acrosomal sperma-
tozoa membrane and the cytoplasmic membrane of
oocytes.

DISCUSSION

Rodent models of HD including transgenic mice
expressing N-terminal fragments of mutant HTT
have been very important for understanding disease
mechanisms, validating targets, and testing candidate
therapies, but have some limitations for modeling the
human disease [2, 17]. The miniature pig (Sus scrofa)
has similarities to humans in anatomy, physiology, and
metabolism [20, 28, 29]. The size and structure of
pig brain makes it amenable to neurosurgical proce-
dures and non-invasive high resolution neuroimaging
methods similar to those performed in humans [30,
34, 77]. The lifespan of minipigs and their sophis-
ticated cognitive and motor abilities also make them
useful for long-term studies of learning, memory and
behavior [28, 78, 79]. In this study we show successful
establishment of a transgenic minipig stably express-
ing N-truncated human mutant huntingtin 1–548 with
124 glutamines through multiple generations.

Transgenic HD minipigs were generated using
lentiviral transduction of porcine zygotes in syngamy,
at the onset of embryonic DNA synthesis. The precise
timing of lentiviral transduction enhances incorpo-
ration of the transgene cDNA into embryos. The
lentiviral delivery did not cause mosaicism, since the
mutant HTT was revealed in all tissues tested in F1
and F2 TgHD minipigs and maintained the same num-
ber of glutamines. We found an in-frame deletion
of the expanded CAG/CAA tract such that the inte-
grated transgene encoded 124 glutamines instead of
the original 145 glutamines. Similar contraction of the
polyglutamine repeat has been observed in human HD
[80]. The rates of transgenesis and viability of offspring
in pig were higher with lentiviral delivery than with
a cloning strategy reported previously [55, 81, 82].
In our experiments, the lentiviral construct that was
used to transduce the minipig genome did not influ-
ence survival or normal development through multiple
generations. The total neonatal mortality of our TgHD
minipigs was 17.2%, which is in the range of the WT
strain (16.4%, Supplementary Data S6). In contrast,
the transgenic HD pigs, generated via a cloning strat-
egy and bearing N-terminal mutant HTT (208 amino
acids and 105 Q), showed a severe chorea phenotype
before death and the presence of apoptotic cells in brain
[55].

Both female and male transmissions of the HD trans-
gene were confirmed in our TgHD minipigs. Two litters
of F1 generation minipigs were born with a rate of
transgenesis of 29.4%. The litters of F2 and F3 gener-
ations had a Mendelian inheritance of the transgene of
40.2% and 34.9%, respectively. Importantly, one sin-
gle copy of exogenous HTT was found in chromosome
1 (1q24-q25) where it was maintained in F1 and F2 off-
spring. The TgHD minipigs of F0 –F2 generations had
two alleles coding endogenous pig HTT and one allele
for the N-terminal human mutant HTT. No homozy-
gote TgHD minipigs were generated with heterozygote
TgHD matings. The site of insertion of the transgene
may have disrupted some essential genetic sequence
that caused lethality of progeny homozygous for the
HD transgene [83]. More detailed information on the
exact site of insertion of the transgene in chromosome 1
may reveal more insights about potential homozygote
lethality.

Mutant HTT protein expression was detected in dif-
ferent brain regions including cortex, caudate nucleus
and putamen and in a variety of peripheral tissues
and confirmed by both Western Blot analysis and TR-
FRET. With one exception (hypothalamus in one of the
TgHD minipigs), the data from WB and TR-FRET bio-
chemical assays showed a good correspondence for the
relative distribution of human mutant HTT in different
brain regions and peripheral tissues. The expression
of the transgenic protein was not confirmed in heart,
stomach, spleen and skeletal muscle. Trottier et al. [84]
determined the presence of HTT protein also in heart.
Discrepancies in observed distribution of huntingtin
in tissues can be influenced by the preparation of pro-
tein lysates [85]. In “bloody” tissues (liver, spleen), red
color of analyte is known to artificially increase back-
ground in TR-FRET readout thus higher mutant HTT
background signals in these WT tissues were likely due
to this effect. The variations in the expression level of
protein were expected in skin tissue due to insufficient
homogenization.

Midbrain dopaminergic neurons play a critical role
in basal ganglia circuitry and function including coor-
dination of movement. Protein phosphatase 1 regula-
tory subunit 1B, also known as dopamine- and cAMP-
regulated neuronal phosphoprotein (DARPP32), is
highly expressed in caudate-putamen medium-sized
spiny neurons [73, 86]. Dopamine D1 receptor stimu-
lation enhances cyclic AMP formation, resulting in the
phosphorylation of DARPP32 [86] at Thr34 by PKA
[87]. A loss of DARPP32 levels in medium-sized spiny
striatal neurons was observed in several rodent models
of HD [74, 88], and in the globus pallidus and putamen



62 M. Baxa et al. / Transgenic Minipig Model of HD

Fig. 9.
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of 7 month old HD sheep [21]. A 16 month old TgHD
minipig brain had a reduction compared to WT in the
intensity of neuronal labeling for DARPP32 in the
caudate nucleus and putamen. Clearly these findings,
which are based on a detailed quantitative analysis of
only one sibling pair of WT and TgHD minipigs, need
to be confirmed in more animals. Nevertheless, the data
suggest that changes in DARPP32 may begin in the
TgHD minipig brain at around 16 months of age.

The formation of aggregates is a hallmark of HD
pathology. Nuclear and cytoplasmic inclusions of
mutant HTT are seen in human postmortem HD
brain and in mouse models of HD [9, 72]. There
was no evidence of aggregates of mutant HTT pro-
tein in the TgHD minipig up to 16 months of age
based on biochemical (AGERA, filter retardation)
and immunohistochemical assays with antibody to
anti-HTT1-17. This antibody detects mutant HTT
inclusions in the human HD brain. Other antibod-
ies commonly used to detect nuclear inclusions of
human HTT fragments in HD mice including MW8
and EM48 produced no staining in the TgHD minip-
igs. The absence of nuclear inclusions in the TgHD
minipigs was consistent with the negative results for
aggregation observed using the AGERA and filter
retardations assays. Clearly study of brains from older
TgHD minipigs will be needed to determine onset of
aggregate formation. Many factors influence the inci-
dence of aggregated mutant HTT including levels of
mutant protein expression, polyglutamine length, the
length of the mutant HTT fragment, and age of the
animal [89–91]. It is noteworthy that a well stud-
ied HD mouse model BACHD which expresses full
length mutant HTT with 97 glutamines encoded by
CAG/CAA repeats [92] develops brain pathology and
progressive motor deficits but lacks obvious intranu-
clear mutant HTT aggregates [93]. Some neuropil
aggregates appeared in late stages (12–18 months
BACHD) and were more prominent when aggressive
antigen retrieval and anti-HTT antibody 3B5H10 were
used in the brain sections [94], suggesting that epi-
topes for detecting mutant HTT aggregates may be
masked. As with BACHD, the polyglutamine tract in
our TgHD minipig has a mix of CAG/CAA repeats. It
is possible that CAG/CAA sequence generates protein

conformations that are unfavorable for immunodetec-
tion of aggregates.

A surprising finding was evidence for a decline in
fertility in F1 boars caused by reduced sperm num-
ber and penetration rate. This phenotype can be easily
monitored in the TgHD minipigs and therefore repre-
sents a biomarker that can be suitable for therapeutics.
From 13–26 months the decline in sperm function
was constant. Analysis of earlier ages might reveal
a period of progressive decline that could also be a
useful index for analysis of therapeutics. As only 2
F1 transgenic boars were available for detailed anal-
ysis, these findings must be considered preliminary
and we are currently investigating reproductive com-
petence in a larger cohort of F2 animals. Pathology
in the germinal epithelium has been documented in
human HD and YAC 128 HD mouse on histologi-
cal sections where a decreased number of germ cells
and reduced seminiferous tubule cross-sectional area
have been observed [95]. The testicular pathology in
humans was related to the presence of mutant HTT
since severity was greater in patients with longer CAG
repeats and testicular pathology was not present in a
patient with amyotrophic lateral sclerosis. The YAC
128 HD mouse develops testicular pathology between
9 and 12 months prior to significant reduction in testos-
terone or GnRH levels but coinciding with changes in
the brain and the appearance of motor deficits. Unlike
the TgHD minipigs, problems with sperm quality and
fertility have not been reported in HD patients.

No evident changes in motor function were observed
in a F0 TgHD minipig up to the age of 40 months. How-
ever, only 4 animals (3 TG vs. 1 WT) were subjected
to the study. A systematic quantitative study focusing
on changes in motor and cognitive functions in TgHD
minipigs is underway (Dr. R. Reilmann, unpublished
data). In contrast to our TgHD minipigs, the short-
lived transgenic piglets produced by a cloning strategy
showed dyskinesia and chorea-like movements before
death [55].

In summary we have developed a heterozygote
TgHD minipig that expresses a human mutant HTT
fragment throughout the CNS and peripheral tissues
in a stable fashion through multiple generations. The
TgHD minipig is healthy at birth and through early

Fig. 9. Immunofluorescence labeling of DARPP32 in WT and TgHD minipig neostriatum. (A and B) Shown are images of microscopic fields
from the putamen of 16 month old WT (A) and TgHD sibling minipig (B). DARPP32 labeling in the cytoplasm is red and DAPI staining
in the nucleus is in blue. (C) Upper boxplot shows median numbers of DARPP32 + neurons (mm3) in caudate nucleus and putamen of WT
and TgHD minipigs. Lower box plots shows median intensity of DARPP32 staining determined as described in Methods. (D) and (E) are
pseudo-color images of DAPI stained nuclei and DARPP32 stained neurons respectively in WT putamen obtained using fire view in FiJi
software as part of thresholding for the neuronal counting procedure. Scale bar 50 �m. (Colours are visible in the online version of the article;
http://dx.doi.org/10.3233/JHD-130001)

http://dx.doi.org/10.3233/JHD-130001
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Fig. 10. Failure of reproductive capacity in TgHD boars. (A) Boxplots show number of spermatozoa per ejaculate in two WT boars and in 2
TgHD minipig boars of similar age (see methods for details). The median number of spermatozoa is reduced in TgHD minipigs compared to
WT minipigs, p-values for all pairwise comparisons (Mann-Whitney U test) are shown in the table. (B) Left: Image of WT oocyte fertilized
with WT spermatozoa in vitro: Note the large number of penetrated, partly de-condensed spermatozoa that are visible in intact oocyte in vitro
fertilized with WT spermatozoa. Right: Image of WT oocyte fertilized with TgHD spermatozoa in vitro. Note the small number of spermatozoa.
The syngamy of male and female pronuclei is visible and only one supernumerary penetrated sperm is evident. (C) Boxplots show the median
ratio of intact WT oocytes (including zona pellucida) penetrated by WT or TgHD spermatozoa as determined by IVF. P-values for all pairwise
comparisons (Mann-Whitney U test) are shown in the table below. (D) Boxplots show the median ratio of WT oocytes with zona pellucida
removed penetrated by WT or TgHD spermatozoa as determined by IVF.

development and does not exhibit obvious signs of
abnormal movement up to 40 months of age. How-
ever, a decline is evident at 16 months in DARPP32
immunoreactivity in the neostriatum, the region most

affected in HD, as well as a decline in sperm num-
ber and penetration rate beginning at about 13 months.
Formal testing of the TgHD minipigs in a battery of
motor tasks is now underway.
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