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ABSTRACT
An important component for successful translation of

cell replacement-based therapies into clinical practice

is the utilization of large animal models to conduct effi-

cacy and/or safety cell dosing studies. Over the past

few decades, several large animal models (dog, cat,

nonhuman primate) were developed and employed in

cell replacement studies; however, none of these mod-

els appears to provide a readily available platform to

conduct effective and large-scale preclinical studies. In

recent years, numerous pig models of neurodegenera-

tive disorders were developed using both a transgenic

approach as well as invasive surgical techniques. The

pig model (na€ıve noninjured animals) was recently used

successfully to define the safety and optimal dosing of

human spinal stem cells after grafting into the central

nervous system (CNS) in immunosuppressed animals.

The data from these studies were used in the design of

a human clinical protocol used in amyotrophic lateral

sclerosis (ALS) patients in a Phase I clinical trial. In

addition, a highly inbred (complete major histocompati-

bility complex [MHC] match) strain of miniature pigs is

available which permits the design of comparable MHC

combinations between the donor cells and the graft

recipient as used in human patients. Jointly, these stud-

ies show that the pig model can represent an effective

large animal model to be used in preclinical cell

replacement modeling. This review summarizes the

available pig models of neurodegenerative disorders

and the use of some of these models in cell replace-

ment studies. The challenges and potential future direc-

tions in more effective use of the pig

neurodegenerative models are also discussed. J. Comp.

Neurol. 522:2784–2801, 2014.
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The utilization of animal models plays a central role in

biomedical research. Experimental animals not only pro-

vide insight into the pathogenesis of human diseases,

but more important, they prove to be fundamental for

development and testing of new pharmacological, surgi-

cal, or cell replacement-based therapies. Small animal

models (such as rodents) have been proven to be invalu-

able in basic biology research because of their accessi-

bility and relatively low cost. Their ability to adequately

model a wide spectrum of human diseases or syn-

dromes, however, is limited. Therefore, the development

and use of large animal models which closely recapitu-

late the pathophysiology of human-related diseases is

crucial for the successful transition of prospective thera-

pies into human clinical trials.

The pig represents one of the large animal models

currently used in human disease-related translational

research. The pig body size, organ(s) physiology, and

anatomical dimensions are similar to humans, thus pro-

viding a readily accessible large animal system for pre-

clinical translational modeling. Moreover, in comparison

to nonhuman primates, the use of pigs offers several

specific advantages including: 1) short gestation interval

(120 days), 2) generation of multiple piglets from a sin-

gle sow (up to 6–12 piglets are typically born), and 3)

cost-effectiveness. Importantly, the experimental use of

pigs, like every other animal used in research, is sub-

ject to regulations and proper research conduct, but

does not raise the same ethical concerns with the pub-

lic as the use of nonhuman primates, making it a read-

ily acceptable animal platform for effective preclinical

experimental use. Pigs have become important in mod-

eling a number of human diseases, such as diabetes,

cardiovascular disease (myocardial ischemia), and multi-

ple neurodegenerative disorders such as stroke, spinal

ischemic, and traumatic injury. In addition, the use of

pig-harvested solid organs is extensively being studied

for its potential use in human organ xenotransplantation

(reviewed in Ekser et al., 2012).

With respect to cell replacement therapies and pre-

clinical safety studies, the use of pigs appears to be

clearly superior over other existing large animal models.

First, a highly inbred miniature pig strain with partial or

near full major histocompatibility complex (MHC) match

has been generated, permitting effective syngeneic

and/or allogeneic solid organ or cell grafting modeling

in which most of the transplantation MHC combinations

relevant to human transplantation can be mimicked

(Utsugi et al., 2001; Mezrich et al., 2003). Second,

well-defined short and medium-term (1–2 months) intra-

venous immunosuppression drug delivery protocols that

lead to consistent xenograft survival (solid organs or

specific organ-targeted injection of human cell lines)

have been developed (Usvald et al., 2010). Third, in

recent years the successful generation of porcine

embryonic, induced pluripotent or fetal tissue-derived

stem cells has been reported and used for in vivo graft-

ing using several porcine disease models (Vodicka

et al., 2008; West et al., 2010; Cheng et al., 2012; Har-

aguchi et al., 2012; Fujishiro et al., 2013). Fourth,

because of similarities in organ dimension (such as

brain or spinal cord), the pig is being effectively used in

preclinical safety studies to define the optimal dosing

of different drugs, neuromodulatory compounds, and

transplantable human cell lines to be used in prospec-

tive human clinical trials (Nakajima et al., 1992; Svend-

sen, 2006; Bode et al., 2010; Templin et al., 2012).

Finally, sequencing of the porcine genome has been

recently completed, thus providing a systematic genetic

database to expand the basic research as well as pro-

duction of custom-made transgenic pigs (reviewed in

Bendixen et al., 2010; Groenen et al., 2012). No other

large animal model, such as sheep, dog, and primate

has these characteristics.

This review provides a comprehensive summary of

recent advances in the field of pig neurodegenerative

disease modeling, current utilization of such models in

cell replacement-based therapies, and preclinical safety

cell grafting dosing studies. In addition, the current bot-

tlenecks in the more effective preclinical use of minia-

ture pigs is summarized and discussed, including: 1)

the need for syngeneic transplant studies using inbred

MHC-compatible pig-derived cell lines, 2) limitations of

long-term immunosuppression, and 3) limited resource

of well-defined embryonic stem cell lines.

MINIATURE PIG AS A DISEASE
PRECLINICAL MODEL

In recent years substantial progress has been made

in using pigs as a preclinical model of numerous human

diseases (reviewed in Whyte and Prater, 2011). Based

on how the disease state is induced, the pig disease

models can be classified into two principal categories:

1) transgenic disease models which employ knockout,

knockin, or random transgene-integration technology,

and 2) central nervous system (CNS) lesion models

which use regional delivery of a variety of neurotoxins
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to induce local neuronal/glial degeneration, or which

directly implement surgically induced lesions in a speci-

fied CNS structure. In the following section, all reported

porcine neurodegenerative models to date are

described and discussed in the context of their validity

in mimicking the related human disease condition.

Transgenic neurodegenerative models
The possibility of genetically modifying pigs provides

scientists with an extremely powerful tool to model virtu-

ally any human genetic mutation-based disease in the

background of a large animal model. Numerous such

transgenic pigs have been generated using various tech-

niques, comprehensively reviewed by Whyte and Prather

(2011). These techniques include microinjection of DNA

into pronuclei of zygotes collected from superovulated

females; sperm-mediated gene transfer (SMGT) (Webster

et al., 2005; Lavitrano et al., 2006); and lentivirus and

retrovirus-mediated gene transfer into the porcine

oocytes and nuclear transfer and cloning (Cabot et al.,

2001; Hofmann et al., 2003; Matsunari et al., 2008).

More recently, targeted transgene insertion by

recombinase-mediated cassette exchange (RMCE) and

somatic cell nuclear transfer (SCNT) enabled integration

of an intact gene of interest into loci preselected for

transcriptional activity (Jakobsen et al., 2013). Using

these techniques, several porcine neurodegenerative

models have been developed, including models of retini-

tis pigmentosa, Alzheimer’s disease, Huntington’s dis-

ease, and spinal muscular atrophy. It is, however,

important to note that most of these genetically modified

pigs have not displayed typical histopathological and

phenotypical characteristics of neurodegenerative dis-

eases that they were developed to model. This is strik-

ingly different to what has been observed in genetically

modified rodent (mouse, rat) models. While the primary

reason for such differences between small and large ani-

mal species is not known, a relatively long lifespan in

pigs (15–20 years) and complex brain circuitry may be

associated with a much slower clinically defined disease

manifestation. It is well known that rodent models have

numerous limitations and caveats associated with

attempting to model complex and still relatively poorly

understood human disorders. These caveats are the rea-

son why, to date, transgenic animal models have not

been the panacea for drug discovery that many had

hoped for (McGonigle, 2014). As the modeling of neuro-

degenerative diseases in pigs is currently in its begin-

nings, in-depth characterization and long-term follow-up

of current models is extremely important, as the informa-

tion acquired from these models will be invaluable when

designing new, genetically more precise pig models of

these devastating human diseases.

Retinitis pigmentosa model
The first transgenic pig model of human disease was a

domestic pig retinitis pigmentosa (RP) model (Petters

et al., 1997). A domestic transgenic pig expressing a

mutated rhodopsin gene (Pro347Leu) was created using

a pronuclear microinjection technique. Similar to human

patients with RP, progressive photoreceptor degenera-

tion (of both rods and cones) in the outer nuclear layer

of retina as soon as by 3 weeks of age and loss of

function by 20 months of age was demonstrated.

Recently, Ross et al. (2012) described the successful

development of a new model of RP in an inbred minia-

ture pig via SCNT with the most common rhodopsin

mutation (Pro23His) found in human autosomal domi-

nant RP. The use of the highly inbred NIH minipig

(SLAC/C haplotype) to generate this P23H RP model

provided it with several advantages over the P347L

model: 1) enables transplantation studies of progenitor

or retinal stem cells using syngenic donors due to high

histocompatibility, 2) these pigs are about 1/2 to 1/3

of the size of age-matched domestic pigs, and 3) clini-

cal phenotype is expected to be more consistent.

Accordingly, this RP model will likely represent a more

useful model, particularly once employed in long-term

cell replacement-based therapies, mutated gene-

corrections and pharmacological studies.

Alzheimer’s disease
Alzheimer’s disease (AD) is the most common neurode-

generative disorder, typically manifested by progressive

memory loss and corresponding neuronal degeneration

in several brain regions, such as in lamina II of the

entorhinal cortex and in the CA1 region of the hippo-

campus (reviewed in Huang and Mucke, 2012). The

genetic basis for familial, autosomal dominant AD is

linked to mutations in PSEN1, PSEN2, and the amyloid

precursor protein gene (APP). These mutations are

associated with increased production of the proteolytic

fragment of amyloid b (Ab), which aggregates into

fibrils and toxic oligomeric forms, eventually leading to

neurodegeneration and corresponding loss of synaptic

connectivity (Walsh et al., 2005).

A transgenic porcine model for AD was developed by

Kragh et al. (2009) in the G€ottingen breed of miniature

pigs. After stable insertion of human APP into fibro-

blasts, one transgenic cell clone was used for SCNT to

produce seven healthy transgenic cloned pigs with nor-

mal weight gain. The transgenic piglets harbored a sin-

gle full-length copy of the neuron-specific splice variant

of human APP transgene in their genome and showed

specific expression of the transgenic protein in brain

tissues. This APP splice-variant carried an AD-causing

D. Dolezalova et al.
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dominant mutation known as the Swedish mutation.

Accumulation of the pathogenic protein and subsequent

appearance of a clinically defined functional deficit

were predicted to develop with increasing age in 1–2

years (Kragh et al., 2009). However, this prediction was

not confirmed, as no significant difference between 1–

2-year-old cloned, transgenic AD minipigs and age-

matched controls were found using the spontaneous

object recognition test (SORT), which is based on

behavioral discrimination of familiar and novel objects

as a measure of memory and, further, no significant

effect of age and IPI (inter-phase intervals) was found

(Sondergaard et al., 2012).

In 2013, the same group (Jakobsen et al., 2013) gen-

erated AD minipigs with targeted transgene insertion by

recombinase-mediated cassette exchange (RMCE) and

SCNT. They first produced G€ottingen minipigs with four

RMCE acceptor loci. By using the Cre-loxP system in

combination with minicircles in fibroblasts with all four

acceptor loci and followed by SCNT, they then pro-

duced piglets with a single cDNA copy of the AD-

causing gene PSEN1M146I driven by an enhanced

human UbiC promoter incorporated into one of the

transcriptionally active acceptor loci (Jakobsen et al.,

2013). To date, no data are available which would dem-

onstrate an AD behavioral phenotype in this model.

Huntington’s disease
Huntington’s disease (HD) is a fatal, autosomal domi-

nant, hereditary, neurodegenerative disorder clinically

characterized by progressive motor dysfunction, cogni-

tive decline, and psychiatric disturbance (Ross and Tab-

rizi, 2011). Causative mutation of HD is an expansion

of the polyglutamine (CAG) repeat sequence in the cod-

ing region of exon 1 of the huntingtin gene localized on

chromosome 4 (HTT; IT-15), leading to expression of

mutant huntingtin protein with expanded poly-glutamine

(polyQ) tract (1993). This expansion induces progres-

sive and devastating neurodegenerative changes in the

entire brain with striatum, cerebral cortex (Vonsattel

and DiFiglia, 1998), and white matter (Tabrizi et al.,

2011; Dumas et al., 2012) being the most affected

regions. Wildtype (WT) huntingtin has numerous func-

tions that are important for normal embryonic develop-

ment and neurogenesis (Cattaneo et al., 2005; Lo

Sardo et al., 2012). HD onset and severity is polyQ-

length-dependent and is characterized histopathologi-

cally by the presence of mutant huntingtin protein

aggregates and inclusion bodies (IBs) (Mangiarini et al.,

1996; DiFiglia et al., 1997). Intensive research revealed

that many factors influence the incidence of aggregated

mutant huntingtin, including levels of mutant protein

expression, polyglutamine length, the length of the

mutant huntingtin fragment, and age of the animal

(Hackam et al., 1998; Li and Li, 1998; Chen et al.,

2002). Since the identification of the HD gene mutation

in 1993 (1993), a wide array of genetic HD models

(transgenic, knockin, knockout, humanized) have been

produced in mouse, rat, nonhuman primate, and sheep

(Mangiarini et al., 1996; von Horsten et al., 2003; Yang

et al., 2008; Jacobsen et al., 2010; Yu-Taeger et al.,

2012).

Cloned transgenic HD minipigs bearing N-terminal

mutant HTT (208 amino acids and 105 Q) were gener-

ated via somatic cell (transduced primary porcine fetal

fibroblasts) nuclear transfer technology (Yang et al.,

2010), but the extremely high expression levels of the

transgene led to premature (3 days old) death of three

of the five piglets. The fourth lived for only 25 days and

the fifth founder was still viable at the beginning of

2013 (Morton and Howland, 2013). Cloned transgenic

HD minipigs displayed typical apoptotic neurons with

activated Caspase-3 and DNA fragmentation in analyzed

brain tissue. The authors suggest that mutant HTT is

more toxic to larger animals in comparison to the

widely used mouse HD model (Yang et al., 2010). The

very short fragment of mutant huntingtin which is

expressed in this pig model brings its usefulness into

question, although no other data have been published

since the initial report. Our group recently reported the

first successful generation of a transgenic HD pig

model (Baxa et al., 2013). To generate this model, the

lentiviral vector encoding human N-terminal-truncated

(548 aa) HTT gene with mixed 145 CAG/CAA repeats

under the control of human HD promoter was injected

into a one-cell stage embryo (microinjection into the

perivitelline space) (Baxa et al., 2013). Twenty-nine

injected zygotes were transferred to recipient sows via

laparoscopy. After standard duration of gravidity, the

first HIV1-HD-548aaHTT-145Q manipulated piglets were

born. One gilt (F807) in a litter of six live newborns was

transgenic (Baxa et al., 2013). Stable transgenic mutant

HTT protein levels (548aa-124Q) comparable to endoge-

nous pig HTT levels were confirmed in the whole CNS

and other organs and successful germ line transmission

occurred through consecutive generations (F0, F1, F2,

and F3). No developmental or motor deficits were

observed up to 40 months of age and no aggregate for-

mation in brain up to 16 months was detected. Analysis

of 16-month-old sibling pairs showed reduced intensity

of DARPP32 immunoreactivity in neostriatal transgenic

HD neurons compared to WT. Transgenic HD boars also

showed reduced fertility and fewer spermatozoa per

ejaculate and in vitro analysis demonstrated decreased

ability of transgenic HD spermatozoa to penetrate WT

miniature pig oocytes (Baxa et al., 2013).

PIG models of neurodegenerative disorders
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Spinal muscular atrophy
Spinal muscular atrophy (SMA) is an autosomal-

recessive neurodegenerative disorder characterized by

the degeneration of the motor neurons of the spinal

cord leading to skeletal muscle wasting (reviewed in

Lorson et al., 2010). SMA is a result of loss-of-function

(deletion or mutation) of the survival motor neuron-1

(SMN1) gene. A highly conserved copy, SMN2, is pres-

ent exclusively in humans and serves as a disease

modifier, as increasing SMN2 copy number decreases

the severity of the disease. SMN2 alone cannot prevent

the disease and mutations in SMN2 have no clinical

consequence if SMN1 is fully functional.

Recently, the first step in development of a porcine

animal model for SMA has been undertaken and hetero-

zygous SMN1 knockout pigs were generated (Lorson

et al., 2011). The authors pointed to the importance of

conservation of alternative splicing events of both

human SMN1 and SMN2 in the pig in order to produce

a successful transgenic model of SMA. The porcine

model of human SMA is being produced in several

stages: First, a knockout (KO) of the SMN1 allele pro-

duced SMN11/2 pigs. Nuclear transfer of SMN1 using

fetal fibroblasts produced healthy SMN11/2 piglets

that, like their human SMN11/2 counterparts, are

phenotypically normal. The second stage of generation

of the porcine model of SMA is currently in progress

and includes the addition of human SMN2 transgene to

the pig genome. After this task is accomplished,

SMN12/2; SMN2 pigs will be generated through

breeding and using a second round of nuclear transfer

(Lorson et al., 2011). At present, efforts are underway

to introduce the human SMN2 transgene into pig fetal

fibroblasts, leading to completion of the pig model of

SMA. Importantly, effective SMA therapeutics do not

currently exist, highlighting the value of a genetically

modified pig model for this disease (reviewed in Lorson

and Lorson, 2012).

Surgically induced neurodegenerative
models
Parkinson’s disease
Parkinson’s disease (PD) is the second most common

neurodegenerative disease, characterized by the loss of

more than �50–70% of the dopaminergic neurons in

the substantia nigra pars compacta (SNc), a profound

loss of dopamine (DA) in the striatum, and the presence

of intracytoplasmic inclusions called Lewy bodies (LB),

which are composed mainly of a-synuclein and ubiqui-

tin. Although mutations in the a-synuclein gene have

thus far been associated only with rare familial cases of

PD, a-synuclein is found in all LBs (Spillantini et al.,

1997). The clinical manifestation of PD includes tremor,

rigidity, bradykinesia, and postural instability, and can

be accompanied by nonmotor symptoms such as olfac-

tory deficits, sleep impairments, and neuropsychiatric

disorders. Importantly, L-DOPA was found to reverse

many of the symptoms and is currently used as a drug

therapy in early Parkinson’s disease, temporarily

improving patients’ motor symptoms (reviewed in Cools,

2006).

To date, PD falls into the category of idiopathic dis-

eases, although some atypical cases have a genetic ori-

gin. Several different genetic mutations (a-synuclein,

parkin, LRKK2, PINK1, DJ-1) have been identified, and

this has led to the development of genetic models of

PD, including mice, Drosophila melanogaster, and Cae-

norhabditis elegans (Dawson et al., 2010). To our knowl-

edge, however, a transgene pig model of PD has not

yet been fully established, although direct stereotaxic

intracerebral transfection of nigra cells with viral vec-

tors encoding for a-synuclein has been accomplished in

the Gottingen minipig (Glud et al., 2011). Only �10% of

PD cases are due to genetic mutations, however, while

the vast majority of PD cases arise without apparent

genetic linkage and are referred to as "sporadic" (Dauer

and Przedborski, 2003). Due to the well-defined appear-

ance of regional neurodegeneration in dopaminergic

neuronal populations in atypical PD, several "neuro-

toxic" models which target these neuronal populations

in vivo have been developed (in addition to transgenic

models). In these models, neurotoxin is delivered sys-

temically or directly injected into targeted brain regions

(Fig. 1) to induce local neuronal degeneration (reviewed

in Blesa et al., 2012). Among the systemic neurotoxins,

the 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-

hydroxydopamine (6-OHDA) are the most commonly

used. In 1999, Mikkelsen et al. first reported the MPTP-

induced Parkinsonism in minipigs. The authors reported

that nine pigs were administered 1 mg/kg of MTPT sub-

cutaneously for 6 consecutive days. All MPTP-treated

animals developed Parkinsonian symptoms, i.e., muscle

rigidity, hypokinesia, and impaired coordination within 5

days; animals with the lowest striatal DA concentrations

showed the most severe signs of Parkinsonism (Mikkel-

sen et al., 1999). Bjarkam et al. (2008b) developed a

stereotaxic technique (Fig. 1) allowing precise implanta-

tion/injections of stem cells (Danielsen et al., 2000;

Cumming et al., 2001; Dall et al., 2002; Bjarkam et al.,

2008b, 2010), viral vectors (Glud et al., 2011), encap-

sulated genetically modified cells (Fjord-Larsen et al.,

2010), and deep brain stimulation electrodes (Bjarkam

et al., 2008a) into specific brain nuclei using the same

surgical set-up and computerized targeting devices as

used for human stereotaxic procedures (Bjarkam et al.,

D. Dolezalova et al.
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2004, 2009). We have likewise developed a model of

progressive PD based on continuous intoxication with

MPTP delivered by a subcutaneously implanted pump,

and evaluated the degree of parkinsonism using both

the previously developed and validated clinical scoring

system and infrared computerized walking analysis

(Mikkelsen et al., 1999; Nielsen et al., 2009). The work

on a symptomatic pig model of PD based on unilateral

lesioning of the nigrostriatal pathway with stereotaxic

injection of 6OH-dopamine—displaying rotational behav-

ior after amphetamine injections proportional to the

degree of nigrostriatal damage and thus unilateral par-

kinsonism—is ongoing.

Spinal trauma models
Recently, several acute or chronic spinal trauma injury

models have been developed in pigs. In these models,

a segmental spinal cord injury is induced after surgical

exposure of trauma-targeted spinal segment(s) using

weight drop, computer-controlled contusion/compres-

sion devices, or calibrated vascular clips (Jones et al.,

2012; Navarro et al., 2012; Zurita et al., 2012; Lee

et al., 2013). Depending on the severity of local seg-

mental injury, the degree of neurological dysfunction is

typically manifested by partial or complete loss of

ambulatory and sensory function. Using a computer-

controlled contusion system, we have recently devel-

oped a chronic spinal trauma model in adult Gottingen-

Minnesota (G-M) miniature pigs (Navarro et al., 2012).

In this model, we have shown that, after 2.5 kg com-

pression force delivered at a velocity of 3 cm/sec on

the dorsal aspect of the exposed Th12 segment, there

is consistent development of paraplegia with loss of

body weight-bearing capacity and that such a deficit

persists for up to 9 months after injury. Importantly,

the histopathological analysis of spinal cords at and

around the injury epicenter showed progressive devel-

opment of syringomyelia (Fig. 2), loss of myelinated

axons and neurodegenerative/inflammatory changes

which are similar to human patients with chronic spinal

trauma. Because of the consistency of neurological dys-

function and spinal histopathological changes similar to

those found in human patients with chronic spinal trau-

matic injury, the pig spinal trauma models in general

are becoming important models in testing new thera-

pies (pharmacological or cell replacement-based) for

treatment of both acute and chronic spinal trauma.

Spinal ischemia models
To model spinal ischemia-induced neurodegenerative

changes which develop during transient aortic cross-

clamping (i.e., surgical procedure to replace aortic

aneurysm), several pig transient spinal ischemia models

have been developed. To induce spinal ischemia, the

descending thoracic aorta is occluded using 1) aortic

clamps in a thoracotomized animal (Colon et al., 1987;

Dapunt et al., 1994; Meylaerts et al., 2000), or 2) a

Figure 1. Stereotaxic targeting of the minipig substantia nigra

(SN). (A) The stereotaxic procedure is similar to the procedure in

humans based on a stereotaxic MRI and subsequent computer-

ized image analysis providing the coordinates for the SN, where-

after the targeting is performed isocentric with a mounted

modified Leksell frame. (B) Postmortem histological image of

three lesion tracts targeting the SN (black arrow).

Figure 2. Development of spinal cavitation (syringomyelia) in an

adult pig at 4 months after Th12 paraplegia-inducing contusion

injury. (A) 2D FSPGR image from 7-T MRI demonstrating the pres-

ence of bilateral septic cavitation (red asterisks) and areas of

high density structures around the injury epicenter. (B) 3D ren-

dered image of the same spinal cord shown in (A). Scale

bar 5 8 mm.

PIG models of neurodegenerative disorders
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balloon catheter previously placed via the femoral

artery is inflated with saline, inducing intraluminal aortic

occlusion (Papakostas et al., 2006). On average, 30–45

minutes of aortic occlusion is required to induce irre-

versible spinal neuronal degeneration in previously

ischemia-exposed spinal segments. Depending on the

duration of ischemic episode, the neurological dysfunc-

tion is typically characterized by paresis or fully devel-

oped spastic or flaccid paraplegia. Histopathological

changes in previously ischemia-exposed spinal cord

segments are characterized by a selective loss of small

inhibitory interneurons (in the case of spastic paraple-

gia) (Fig. 3) or pan-necrotic neuronal degeneration (in

the case of flaccid paraplegia), affecting populations of

both small interneurons and large, ventrally located a-

motoneurons. These behavioral/histopathological data

in pig spinal ischemia models are similar to previously

reported spinal ischemia models in rodents (mice, rats,

rabbits), (Zivin and DeGirolami, 1980; Taira and Mar-

sala, 1996; Kakinohana et al., 2011), dogs, baboons

(Gelfan and Tarlov, 1955; Svensson et al., 1986), and in

human patients with previous spinal ischemic injury

(Tarlov, 1967). As in the spinal trauma model, the pig

spinal ischemic injury model may represent a large pre-

clinical model of choice to evaluate the efficacy of cell

replacement therapies in modulating motor dysfunction

after transient spinal cord ischemia.

Air decompression-induced spinal degeneration
model
Decompression illness (DCI), commonly known as

diver’s disease or "the bends," is a systemic disease

resulting from formation of bubbles in the tissues or cir-

culation because of inadequate elimination of inert gas,

mostly nitrogen, after diving. Clinically, patients typically

present with two common types of symptoms. Type I:

joint pain only (shoulder, elbow, hip, and/or knee),

cutaneous (cutis marmorata), lymphatic (pitting edema),

or Type II: cardiopulmonary (chokes) or neurologic

(paralysis) (Barratt et al., 2002; Barratt and Van Meter,

2004). The most commonly affected areas of the cen-

tral nervous system are the lower thoracic spinal cord

(Tournebise et al., 1995; Barratt et al., 2002) and/or

the brain territory supplied by the middle cerebral

artery or vertebral-basilar arterial systems (Barratt

et al., 2002).

The most widely used model of DCI is the pig model.

In this model, using a compression chamber, a simu-

lated dive to 200 feet of seawater (612.6 kPa) with a

decompression rate of 60 fsw.min21 is typically used to

induce DCI. Animals show signs of motor dysfunction

and dysesthesia during the first 2–7 minutes after

decompression (Broome and Dick, 1996). Histopatho-

logical analyses in pigs with DCI show the presence of

spinal parenchymal hemorrhages and spongiosis at 24

hours after induction of DCI (Broome and Dick, 1996)

and with fully developed necrotic foci several days after

injury (Barratt et al., 2002).

Focal brain ischemia models
Several focal brain ischemia (FBI) models have been

developed in the pig. First, FBI is induced by transorbi-

tal frontotemporal permanent middle cerebral artery

occlusion. In this model, consistent and predictable

Figure 3. Selective loss of small neurons in lumbar spinal cord after transient spinal cord ischemia in an adult pig. Animal developed spas-

tic type of paraplegia at 3 weeks after 40 minutes of transient aortic occlusion. (A) Transverse spinal cord section taken from L3 spinal

cord segment of a control na€ıve animal and stained with neuron-specific antibody NeuN. Normal distribution of small interneurons in dor-

sal horn (DH), in the intermediate zone (lamina VII) as well as large a-motoneurons in ventral horn (VH) can be seen. (B) Transverse spinal

cord section taken from L3 spinal cord segment of an animal with developed ischemic spastic paraplegia and stained with neuron-specific

antibody NeuN. A selective loss of small interneurons in dorsal horn and in the intermediate zone (lamina VII; black semicircle) can be

seen. In contrast, a-motoneurons in the ventral horn (VH) show continuing survival. Scale bar 5 1 mm; cc, central-canal.
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neurodegenerative changes have been identified in

affected brain regions using MRI and histopathological

analysis (Imai et al., 2006; Zhang et al., 2007). Second,

FBI was produced in male infant piglets (2–4 weeks

old) by photothrombotic occlusion of the middle cere-

bral artery. In this model, both a significant decrease in

regional blood flow and the appearance of apoptotic

positive cells were seen at 4 hours after injury (Kuluz

et al., 2007).

Global brain ischemia models
Global brain ischemia (GBI) occurs when cerebral blood

flow is reduced in most or all areas of the brain and is

commonly caused by cardiovascular failure (Hossmann,

1991). GBI causes neuronal injury to selectively vulner-

able brain areas (Kurth et al., 1999; Traystman, 2003).

The clinically most relevant model of GBI is cardiac

arrest (Hossmann, 1991) caused by ventricular fibrilla-

tion (Traystman, 2003). Several pig models of GBI

induced by cardiac arrest were developed using young

piglets (LeBlanc et al., 1993; Thoresen et al., 2001;

Wiklund et al., 2005) or adult animals (Mayr et al.,

2001; Yannopoulos et al., 2005). Cardiac arrest in pigs

is commonly induced by ventricular fibrillation produced

by AC current (Tadler et al., 1998; Liu et al., 2003; Yan-

nopoulos et al., 2005). In addition, asphyxial cardiac

arrest (Mayr et al., 2001; Agnew et al., 2003), hypoxic

global insult (Thoresen et al., 2001), bupivacaine-

induced cardiac arrest (Mayr et al., 2001), or hypother-

mic cardiac arrest (Ye et al., 1996; Kurth et al., 1999;

Rimpilainen et al., 2000; Kornberger et al., 2001) are

also reported methods to induce cardiac arrest in pigs.

As such, pigs with previously induced cardiac arrest are

often used as a model for cardiopulmonary resuscita-

tion (CPR) and therefore are commonly referred to as

cardiac arrest/CPR models (Traystman, 2003). Brain

histopathological analysis shows that the severity of

neuronal degeneration directly correlates with the

length of the experimental GBI. Cardiac arrest and the

resulting GBI in piglets cause blood–brain barrier (BBB)

breakdown, and subsequent albumin leakage contrib-

utes to brain edema, which ultimately leads to selective

rapid and progressive neuronal damage (Sharma et al.,

2011). Affected areas also exhibit the myelin loss and

appearance of activated glial fibrillary acid protein

(GFAP)-positive astrocytes typically seen several days

to weeks after ischemic insult (Sharma et al., 2011).

The most vulnerable brain regions in animals with GBI

induced by ventricular fibrillation are (severity in

descending order) thalamus, cerebral cortex, hippocam-

pus, hypothalamus, and brain stem (Sharma et al.,

2011). In GBI induced by (deep) hypothermic circulatory

arrest it is hippocampus, cerebral cortex, striatum

(caudate nucleus, putamen), cerebellum (Ye et al.,

1996; Kurth et al., 1999), thalamus, pons, and mesen-

cephalic gray matter (Ye et al., 1996; Kurth et al.,

1999). Ischemia-damaged neurons displayed apoptotic

cell death in the cerebral cortex (with some rare clus-

ters of infarction with necrotic cells), and a mixture of

necrotic and apoptotic neurons was found in the hippo-

campus in brains of DHCA piglets (Kurth et al., 1999).

Brain damage in DHCA piglets resulted in neurological

deficit which included (severity in descending order)

disturbed gait, feeding difficulty, abnormal tone, and

impaired consciousness. Neurological deficit after

DHCA progressively improves even during the period of

ongoing neuronal cell death (Kurth et al., 1999). Pig

models of cardiac arrest/CPR were used to study the

effect of various drugs such as epinephrine (Schleien

et al., 1986; Lindner et al., 1991; Kornberger et al.,

2001), methoxamine (Brown et al., 1987), vasopressin

(Mayr et al., 2001), or xenon (Schmidt et al., 2005) or

the effect of hypothermia after cardiac arrest on cere-

bral and/or myocardial perfusion and neuroprotection

(Thoresen et al., 2001; Agnew et al., 2003).

Recently, a new isolated GBI model was developed

by occlusion of the innominate, proximal left subclavian,

and both the internal mammary and distal subclavian

arteries (Allen et al., 2012). In this model 30 minutes of

ischemia led to the development of multiple postreper-

fusion seizures, raised NDS, and postmortem macro-

scopic swelling was observed, accompanied by edema

in the cortex, cerebellum, and hippocampus (Allen

et al., 2012).

Traumatic brain injury models
Numerous experimental studies were reported which

employ a fluid-percussion-induced brain injury in pigs.

Using this model system in juvenile or adult pigs, the

extent of local cortical injury can be well calibrated and

lead to predictable pathological changes ranging from

focal neurodegenerative changes to more diffuse injury,

including loss of axonal integrity (Brodhun et al., 2001;

Fritz et al., 2005). More recently, a controlled cortical

impact model was developed in adult Yorkshire pigs in

which the velocity of cortical impact and the dwell time

can be preprogrammed (Manley et al., 2006). Using

this model, it was demonstrated that following injury

there was a progressive increase in intracranial pres-

sure and heart rate and these changes were more pro-

nounced in animals with the 12 mm depth of

depression. Animals exposed to 11 mm depth of

depression displayed the presence of edema, inflamma-

tory cells, and pericapillary and petechial hemorrhages

similar to those seen in human patients. Similarly as

seen in human patients, the histopathological analysis
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showed the presence of degenerating neurons and axo-

nal injury in and around the injury epicenter (Manley

et al., 2006).

Use of pig models in cell replacement
modeling
Immunosuppression protocols and immunodefi-
cient pigs
A critical requirement for the successful utilization of

experimental cell replacement modeling is the develop-

ment of effective immunosuppression protocols which

would lead to consistent grafted cell (xenografts or allo-

grafts) survival. Several routes of immunosuppressive

drug delivery were reported to be successfully used in

pigs, each having its pros and cons. First, immunosup-

pressive drug can be delivered orally, typically mixed

with liquid food (Jones et al., 1999; Sano et al., 2002;

Jensen-Waern et al., 2012). While the noninvasive

nature of orally delivered drugs is preferable, such an

approach can be hampered by inconsistencies in the

drug absorptions, particularly if severely injured animals

with variable food appetite are to be employed. Second,

repetitive bolus delivery or continuous intravenous infu-

sion of immunosuppressive drugs using a chronically

placed intravenous catheter was successfully used

(Griesemer et al., 2008; Usvald et al., 2010; Kakino-

hana et al., 2012). While being more labor-intensive,

this approach permits the achievement of a well-

controllable blood drug concentration and can effec-

tively be used for several months after initiation. Third,

we have recently reported the successful use of long-

term (up to 3 months) tacrolimus (Tac)-releasable sub-

cutaneous pellet-induced immunosuppression in rat spi-

nal xenograft studies (Sevc et al., 2013). The initial use

of the Tac pellet formulation in adult (25–30 kg) or

young (5–8 kg) piglets shows comparable long-lasting

immunosuppression after a single subcutaneous Tac

pellet implantation (unpubl. obs.).

It is of note that utilization of severe combined immu-

nodeficient (SCID) pigs would not only greatly facilitate

experimental cell replacement modeling but also allow

the production of humanized tissues and organs. Inter-

estingly, the first successful generation of immunodefi-

cient pigs was only recently reported by Suzuki et al.

(2012). SCID pigs were generated by nuclear transfer

using X-linked interleukin-2 receptor gamma chain gene

(Il2rg)-targeted embryonic fibroblasts as donor cells.

Germline transmission of the Il2rg deletion produced

athymic hemizygous Il2rg (-/Y) males with impaired

immunoglobulin production and the absence of T and

NK cells (Suzuki et al., 2012). However, immunodefi-

cient pigs were short lived (<2 months) even under

controlled laboratory conditions and thus not suitable

for long-term experimental studies (Suzuki et al., 2012).

Watanabe et al. (2013) also recently generated Il2rg KO

pigs which, similar to above-mentioned study and

human X-linked SCID patients, lacked thymus and were

deficient in T and NK cells. Importantly, they demon-

strated that the combination of Zinc Finger Nuclease-

encoding mRNAs and SCNT can provide easier and

robust method for producing KO pigs without genomic

integration and thus greatly facilitate the development

of porcine SCID model in the future (Watanabe et al.,

2013).

Use of miniature pig in spinal cell dosing and
safety studies
The nondiseased na€ıve miniature pigs are frequently

used in preclinical safety and toxicity cell replacement-

based or pharmacological studies (Nakajima et al.,

1992; Svendsen et al., 2006; Bogde et al., 2010; Tem-

plin et al., 2012). The primary goal in those studies is

the definition of a safe dosing regimen to be used in

prospective human clinical trials. Because of the simi-

larities in spinal cord (and to some extent brain) dimen-

sions to humans, pigs represent an effective model to

perform detailed cell grafting dosing studies.

Our group has developed and used a spinal cell

injection technique in chronically immunosuppressed

na€ıve pigs to define the optimal cell dosing regimen of

human fetal tissue-derived neural precursor cells

(NPCs) grafted into the lumbar spinal cord (gray matter)

as analyzed by changes in neurological function and

local spinal histopathological changes (Fig. 4) (Usvald

et al., 2010). This model was then used further in other

laboratories to perform additional detailed toxicity stud-

ies after lumbar and cervical grafting of human NPCs

and to test a spinal cell injection device subsequently

used in a human clinical trial. The data from both stud-

ies were used for designing the clinical cell dosing pro-

tocol and then used in a Phase I clinical trial in human

amyotrophic lateral sclerosis (ALS) patients receiving

spinal grafts of human spinal stem cells. Phase I of this

trial was successfully completed (Boulis et al., 2011;

Donnelly et al., 2012; Glass et al., 2012; Riley et al.,

2012).

To our knowledge there are no experimental data

available at present which would employ a pig model(s)

of neurodegenerative disorders in cell replacement-

based therapies. We have recently employed a previ-

ously described Th12 spinal contusion model in pig and

have tested the survival and differentiation of human

spinal stem cells once grafted into and around the

injury epicenter at 24 or 72 hours after injury. Consist-

ent cell survival was seen at 4 weeks after cell grafting
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in continuously immunosuppressed animals (Wein-

garten, 2013).

Current limitations on effective use of pig
model in autologous, syngeneic, and allogeneic
cell grafting modeling
Currently used protocols in human solid organ trans-

plantation or bone marrow grafting use a well-

developed crossmatch and HLA genotype-screening

platform between donor and graft recipient (Sheldon

and Poulton, 2006). These protocols have allowed for

optimal HLA matching between donor and recipient tis-

sues, resulting in significantly improved long-term sur-

vival of allogeneic grafts (Dyer et al., 1989; Opelz et al.,

1999). Despite these advances, it is not known whether

allogeneic stem-cell-derived grafts would induce similar

immune responses, since these cell-based grafts do not

carry passenger leukocytes and express low levels of

HLA, thereby reducing the likelihood of inducing direct

allorecognition (Boyd et al., 2012). To advance our

understanding and to optimize immunosuppression pro-

tocols to be used in prospective clinical trials, the avail-

ability of similarly MHC-characterized large animal

models (fully or partially MHC-matched) which would

mimic the MHC transplantation combinations relevant

to the human population is required. An inbred fully or

partially MHC SLA-matched miniature pig strain was

recently developed (Pennington et al., 1981; Mezrich

et al., 2003) and successfully used in solid organ (kid-

ney) transplantation modeling as well as in development

of immune tolerance (allogeneic kidney transplant) pro-

tocols using short course immunosuppression across a

two-haplotype, fully MHC-mismatched barrier (Utsugi

et al., 2001).

However, in contrast to solid organ transplantation,

there are no experimental data available at present

which would use the porcine embryonic stem cells

(ESCs)-induced pluripotent stem cells (iPSCs)- or fetal

tissue (FT)-derived NPCs obtained from WT or fully

MHC-matched or partially MHC-matched pigs and used

in cell replacement modeling in pig neurodegenerative

models. The availability of such cell lines and MHC-

matched adult pig recipients is critical for several rea-

sons: 1) A primary planned utilization of iPS-derived

lines is their use in autologous transplantation in the

absence of immunosuppression. However, at present,

no optimal reprogramming protocol is defined (i.e., inte-

grative vs. nonintegrative approach) and typically sev-

eral clones of such iPSCs are prepared in vitro from a

single donor for potential in vivo grafting. The availabil-

ity of multiple genetically identical (MHC genes in par-

ticular) recipients is therefore critical in the effective

screening of individual clones and to study the diversity

Figure 4. Instrumentation and technique used to induce/perform

spinal trauma, spinal cell injections and chronic intravenous

immunosuppression in adult pig. (A) To immobilize the lumbar

spine, a custom-made spinal immobilization frame which can

accommodate pigs between 10–40 kg of body weight is used.

The frame is equipped with a removable horizontally oriented

steel platform (red arrow) which serves to attach a spinal com-

pression apparatus or spinal injection devices. (B) To immobilize

the lumbar spine, the anesthetized animal is lifted from the oper-

ating table and four horizontal steel bars (two on each side; red

arrows) are slid against the lumbar paravertebral muscles bilater-

ally with the spine resting on the top of the bars. (C) For chronic

intravenous immunosuppressive drug delivery, a chronic vein

catheter is implanted into the jugular or femoral vein and drug is

delivered continuously using 5- or 7-day lasting external infusion

pumps. One pump or two infusion pumps (if continuous delivery

of two different drugs is required) are placed and secured in

pockets (red arrow) of custom-made pig jacket.
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in clone engraftment properties if different reprogram-

ming strategies are used. 2) The use of ESC- or FT-

derived cell lines (such as neural precursors) in MHC-

matched or partially matched recipients can substan-

tially facilitate our understanding of the need for tran-

sient or continuous immunosuppression once cells are

grafted into the injured-inflamed spinal cord or brain

milieu. In the face of imminent human clinical spinal

and brain trauma trials with planned use of human fetal

tissue or ES-derived NPCs, such data are of critical

importance. Recent clinical data show that the use of

continuing immunosuppression is a major limiting factor

because of its side effects and poor long-term tolerabil-

ity in ALS patients treated with spinal human stem cells

(Glass et al., 2012). Thus, the definition of potential

immune tolerance after using only transient immuno-

suppression protocols in large animal allogeneic grafting

design is important for the optimization of human clini-

cal immunosuppressive protocols by mimicking a similar

allogeneic-immunosuppression treatment design.

Figure 5. Generation and in vitro and in vivo postgrafting characterization of porcine iPS-derived neural precursors (NPCs). (A) Appearance

of established iPS colony cultured on MEFs after skin fibroblasts reprogramming with retroviruses encoding Oct4, Sox2, Klf4, and c-myc.

(B–E) Proliferating iPS colonies expressed pluripotent markers Nanog and Tra 1–60. (F) In vitro induced embryoid bodies show expression

of markers of all three germ layers including SMA (mesoderm), AFP (endoderm), and TUJ1 (ectoderm). (G) Proliferating porcine iPS-NPCs

in culture show a typical NPCs morphology. (H,I) In vitro induced NPCs show expression of early neuronal marker DCX (H) and mature

neuronal marker NeuN (I). (J) Survival and differentiation of porcine iPS-NPCs at 4 weeks after spinal grafting in immunosuppressed alloge-

neic pig. A high density of grafted NeuN/DCX-immunoreactive neurons surrounding NeuN1 host a-motoneuron can be seen. Antibodies:

Nanog (rabbit anti Nanog: Cat. No. 21624-100, 1:1000, Abcam, Cambridge, MA), Tra 1–60 (mouse anti Tra 1–60; Cat. No. FCMAB115F,

1:100, Millipore, Bedford, MA) SMA (goat anti alpha smooth muscle actin, Cat. No. 21027, 1:250, Abcam), AFP (rabbit anti alpha-

fetoprotein, Cat. No. AM31985PU-S, 1:50, Acris Antibodies, San Diego, CA), TUJ1 (mouse anti-tubulin beta III, Cat. No. MAB1637, 1:250,

Millipore), DCX (goat anti-doublecortin, Cat. No. sc-8066, 1:500, Santa Cruz, Santa Cruz, CA), NeuN (mouse anti-neuron-specific nuclear

protein, Cat. No-MAB377, 1:250, Millipore). Scale bars 5 100 lm in A,F; 30 lm in B; 10 lm; in G–I; 50 lm in J.
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Figure 6. Isolation, expansion, labeling, and in vitro and in vivo post-spinal grafting characterization of porcine fetal spinal cord-derived

NPCs. (A) NPCs are isolated from the lumbar portion of 25–35-day-old fetuses, expanded, and labeled with GFP-encoding lentivirus under

ubiquitin promoter. (B) Proliferating NPCs show typical multipolar morphology. (C) In vitro induced NPCs show differentiation towards neu-

rons (TUJ1), astrocytes (GFAP), and oligodendrocytes (O4-insert). (D–G) At 4 weeks after spinal grafting into lumbar spinal cord of an

immunodeficient rat, GFP-labeled grafts and differentiation of grafted cells to neurons (NeuN; E), (DCX; F), and glia (vimentin; Vim; G) can

be seen. Antibodies: TUJ1 (mouse anti-tubulin beta III, Cat. No. MAB1637, 1:250, Millipore), GFAP (mouse anti-glial fibrillary acidic protein,

Cat. No. C9205, 1:500, Sigma, St. Louis, MO), NeuN (mouse anti-neuron-specific nuclear protein, Cat. No-MAB377, 1:250, Millipore). DCX

(goat anti-doublecortin, Cat. No. sc-8066, 1:500, Santa Cruz), VIM (mouse anti-vimentin, Cat. No. 18–0052, 1:1000, Zymed, San Francisco,

CA). Scale bars 5 30 lm in C; 100 lm in D.
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Pig embryonic stem cell-derived, fetal tissue-
derived, and iPS-derived neuronal precursors.
Embryonic stem cells
Despite extensive investigation in recent years, it has

proven difficult to obtain bona fide blastocyst-derived

pluripotent porcine cells in vitro. Putative porcine ESCs

have been derived by several groups; however, their

"stemness" (i.e., self-renewal and pluripotency) and sta-

ble expression of pluripotency markers have not been

shown. Moreover, their ability to form teratomas or con-

tribute to formation of pig chimeras remains to be dem-

onstrated (Strojek et al., 1990; Notarianni et al., 1991;

Piedrahita et al., 1999; Chen et al., 1999; Li et al.,

2003; Vackova et al., 2007; Kim et al., 2007).

Induced pluripotent stem cells
Generation of porcine iPSCs using integrating viral vec-

tors as well as a nonintegrative approach for reprogram-

ming has been recently reported (Wu et al., 2009;

Esteban et al., 2009; Ezashi et al., 2009; Telugu et al.,

2010; Montserrat et al., 2012; Park et al., 2013). How-

ever, newly derived cell lines often displayed variable

expression of pluripotency related genes or a tendency

for spontaneous differentiation in vitro (Esteban et al.,

2009; Ezashi et al., 2009; Wu et al., 2009). Moreover,

the ability of porcine iPSCs to form teratomas after in

vivo grafting seemed to be limited to cells with active

transgenes and, furthermore, similar to ES-derived pluri-

potent lines, germline chimeras derived from pluripotent

iPSC lines still remained to be generated. Importantly,

several recent studies showed that porcine iPSCs can

indeed be successfully generated (West et al., 2010;

Telugu et al., 2011; Cheng et al., 2012; Montserrat

et al., 2012; Fujishiro et al., 2013). Our group has also

recently produced porcine iPSCs using both integrating

and nonintegrating reprogramming vectors (Kakinohana

et al., 2010). We have also successfully isolated several

clones of expandable iPS-NPCs after in vitro differentia-

tion. These porcine iPSC-derived NPCs showed long-term

in vivo survival and expression of neuronal markers after

grafting into the spinal cord of immunosuppressed na€ıve

pigs (Kakinohana et al., 2010) (Fig. 5). Despite the latest

promising advances, hurdles still remain if these cells

are to achieve their expected biotechnological potential.

Fetal tissue-derived NPCs
Several groups have reported that multipotent porcine

NPCs can be derived directly from the porcine blastocyst

(Puy et al., 2010) and/or fetal brain tissue (Deacon

et al., 1997; Schwartz et al., 2005; Harrower et al.,

2006). Such derived and in vitro expanded NPCs show

long-term (up to 7 months) survival and integration after

in vivo intrastriatal grafting in a rat unilateral 6-OHDA

lesion model of PD and in PD patients receiving unilat-

eral grafts of NPCs into the caudate-putamen (Deacon

et al., 1997; Harrower et al., 2006). Our group has

recently derived expandable NPCs from E-25 or E-35

developing porcine cortex and spinal cord. Such derived

NPCs can be expanded for at least 16 passages and

retain their neurogenic potential upon differentiation in

vitro. Similarly, we have seen consistent engraftment and

neuronal and glial differentiation of the same porcine

GFP-tagged NPCs after spinal grafting in na€ıve immuno-

deficient rats at 4 weeks after cell grafting (Fig. 6).

Jointly, these data demonstrate that current NPC deriva-

tion protocols can effectively be used to generate trans-

plantable populations of porcine NPCs to be used in

autologous, syngeneic, or allogeneic cell grafting studies.

SUMMARY

The use of cell replacement-based therapies is her-

alded as a promising treatment approach to modulate

functional deficits associated with a variety of neurolog-

ical disorders including stroke, spinal trauma, or ALS.

While cell replacement therapies are rapidly advancing

into the human clinic, several refinements such as

defining the optimal cell dose, immunosuppression pro-

tocols, and/or the use of new cell delivery devices are

needed. Accordingly, there is an imminent need for

development and characterization of a large animal

model(s) of different neurodegenerative disorders which

can effectively be used to define the efficacy of cell

replacement therapies and can also serve to develop/

validate new cell delivery technologies. As reviewed in

this article, significant progress has been made over

the past decade and numerous transgenic or surgically

induced neurodegenerative models have been devel-

oped in pigs. More important, using a pig model, pre-

clinical spinal and brain cell-grafting data and long-term

immunosuppression protocols were generated and then

successfully used in designing human clinical trials. In

addition, the availability of a fully or partially MHC-

matched pig strain (in contrast to other large animal

species) and the use of these animals in cell replace-

ment modeling will permit the study of comparable

MHC combinations as seen in human patients (HLA

compatibility). Collectively, these data demonstrate that

the use of pig neurodegenerative models can represent

an important and highly effective preclinical in vivo plat-

form to validate cell-replacement-based therapies

before their transition to human clinical practice.
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