CDK1 ACTIVITY DURING MEIOTIC MATURATION

https://socratic.org/questions/where-in-the-body-do-oocytes-mature

Mouse oocytes proceed through meiosis I and arrest at second meiotic metaphase with high CDK1-cyclin B1 activity.

MPF AND APC ACTIVITY DURING METAPHASE II ARREST

Cytostatic factor (CSF) is responsible for metaphase II arrest

METAPHASE II ARREST AND EGG ACTIVATION TRIGGERED BY FERTILIZATION

Sanders and Jones, 2018, Biochemical Society Transactions

PLCz - Phospholipase C zeta, CAMKII - Calcium/calmodulin-dependent protein kinase II

MEIOTIC-TO-MITOTIC TRANSITION

Clift, Schuh, 2013, Nat Rev Mol Cell Biol., PMID: 23942453

 SCC1-containing cohesin complexes are loaded onto chromosomes immediately in the zygote

FROM A TRANSCRIPTIONALLY SILENT ZYGOTE TO THE ZYGOTIC GENOME ACTIVATION

Highlights of the mouse oocyte-to-embryo transition https://www.biochem.mpg.de/tachibana/research

Maternal transcripts are degraded and embryonic transcription in the major zygotic genome activation occurs in the 2-cell mouse embryo

INITIAL EMBRYONIC CELL DIVISIONS ARE ACCOMPANIED BY CELL CYCLE ADAPTATIONS

The estimated duration of cell cycle stages during murine embryonic cell cycles Palmer, Kaldis, 2016, *Curr Top Dev Biol.*

Regulation of the transition from a long G1 and short G2 in zygotes to a short G1 and long G2 in two-cell embryos and the mechanisms by which the cell cycle regulates genomic integrity remain largely unknown.

CHK1 KINASE IS ESSENTIAL FOR THE GENOME INTEGRITY

PROTECTION IN SOMATIC CELLS

The cell cycle checkpoint pathway activated by DNA damage Gillespie, 2018, modified

CHK1 activity inhibits CDC25 phosphatases and thus holds the cells in the
G2 phase until ready to enter the mitotic phase after DNA repair

CHK1 KINASE IS ESSENTIAL FOR MAINTAINING THE LONG G2 PHASE IN TWO-CELL EMBRYOS

Shorter G2 and genome fragmentation in 2-cell Chk1 mKO class I embryos

Chromatin, mCDT1-EYFP, time post hCG administration (h)

CHK1 KINASE IS ESSENTIAL FOR MAINTAINING THE LONG G2 PHASE IN TWO-CELL EMBRYOS

 CHK1-CDC25A-CDK1 maintains a long G2 phase in 2-cell mouse embryos that protects early embryos from chromosome segregation errors that result in aneuploidy and infertility.

CHROMOSOME SEGREGATION AND CONFIGURATION IN OOCYTES

Thomas et al, 2021, Biochemical Society Transaction

 Merotelic attachments during the multipolar stages are a common cause of lagging chromosomes in anaphase

SPINDLE ASSEMBLY IN OOCYTES – IMPLICATIONS FOR HUMAN INFERTILITY

Thomas et al, 2021, Biochemical Society Transaction spindle instability during meiosis I of human oocytes leads to lagging chromosomes in anaphase I

CENTRIOLE LOSS IN MAMMALIAN OOCYTES

- □ GFP-centrin-2 transgenic mice
- PGC primordial germ cells

Simerly et al, 2018, Sci Rep., PMID: 30143724

Separation and gradual loss of centrioles from primordial germ cells to mature oocytes in the mouse

ACENTRIOLAR SPINDLE FORMATION IN MAMMALIAN OOCYTES

- Acentriolar MTOCs (microtubule organizing centers)-dependent and chromatin-dependent pathways contribute to acentrosomal spindle assembly
- alternative pathways

MTOCS-DEPENDENT SPINDLE ASSEMBLY IN MOUSE OOCYTES

Three-step mechanism of MTOC fragmentation in mouse oocytes

Clift a Schuh, 2014, Nature Communications

Each step of MTOCs behaviour and spindle formation is critical for correct chromosome segregation

ROLE OF AURORA KINASES (AURKS) IN SPINDLE ASSEMBLY

Nguyen a kol., 2018, Current Biology

Somatic cells

- □ AURKA centrosomes
- □ AURKB CPC

(chromosomal passenger complex)

- AURKA MTOCs
- **AURKB** ?
- □ **AURKC** CPC, MTOCs

Why germ cells express three Aurora kinases instead of two?

A MODEL OF OOCYTE-SPECIFIC AURKB/AURKC DOUBLE-KNOCKOUT MICE

Aurkb/Aurkc double KO (B cKO/C KO) mice are subfertile

in oocytes upon deletion of *Aurkc* Nguyen a kol., 2018, *Current Biology*

AURKA specifically in mouse oocytes compensates for loss of AURKB/C

A MODEL OF OOCYTE-SPECIFIC AURKA KNOCKOUT MICE

Aurka knockout oocytes (KO) are arrested in Metaphase I with defective spindle

Blengini et al, 2021, PLoS Genetics

Chromosomes, spindle, MTOCs, time (hh:mm) after meiotic resumption

 AURKA is required for spindle assembly and meiosis I-meiosis II transition in mouse oocytes

ROLE OF AURKA IN MTOCS FRAGMENTATION

AURKA is required for full PLK1 activation to initiate MTOC fragmentation through inducing C-NAP1 release from aMTOCs

MTOC SORTING IS REGULATED BY AURKC AND HASPIN KINASE

control

Haspin inhibition

Haspin regulates AURKC localization on chromosomes and MTOCs

Live-cell imaging of haspin-inhibited oocytes

Balboula et al, 2016, Journal of Cell Science Chromosomes, spindle, MTOCs, time (hh:mm) after meiotic resumption

Haspin regulates AURKC localized-function at MTOCs in mouse oocytes

MTOCs clustering defects are associated with segregation errors

MTOC SORTING IS REGULATED BY HURP

Breuer et al, 2010

- By promoting stability in the spindle central domain, HURP allows MTOC sorting, providing bipolarity establishment and maintenance
- HURP has a critical role in the clustering of extra centrosomes during mitosis in human cancer cells

THE ROLE OF RANGTP-IMPORTIN BETA PATHWAY

Clarke, Zhang, 2008, Nature reviews. Molecular cell biology

During cell division, high concentrations of RanGTP around the spindle assembly regions attract the importins and release NLS-containing SAFs from inhibitory importins

INHIBITION OF RANGTP PATHWAY USING DOMINANT NEGATIVE RAN MUTANT

EFFECT OF IMPORTAZOLE (IPZ) ON SPINDLE ASSEMBLY IN MOUSE OOCYTES

RanGTP is required for the proper formation of the meiotic spindle

EFFECT OF IMPORTAZOLE AND RANT24N ON RANGTP GRADIENT FORMATION

Quantitative FLIM/FRET imaging of RanGTP gradient

in RanT24N-microinjected or Importazole (IPZ)-treated oocytes

Drutovic et al, 2020, EMBO Journal

Dominant negative RanT24N, as well as Importazole, reduced the RanGTP gradient in mouse oocytes

EFFECT OF IMPORTAZOLE AND RANT24N ON RANGTP GRADIENT FORMATION

RanT24N did not act as a dominant negative mutant of Ran

SPINDLE ASSEMBLY IN HUMAN OOCYTES

So et al, 2022, Science, PMID: 35143306

- microtubule cross-linking protein NUMA localized to microtubule minus ends (spindle poles) in human oocytes
- NUMA-depleted human oocytes formed spindles with defocused poles

SPINDLE ASSEMBLY IN OOCYTES – IMPLICATIONS FOR HUMAN INFERTILITY

- □ KIFC1 stabilizes the spindle poles and prevents their fragmentation
- KIFC1 is present in other mammalian oocytes but deficient in human oocytes
- Microinjection of KIFC1 rescued stabile spindle poles formation in human oocytes

LISD AS A ALTERNATIVE STRATEGY FOR SPINDLE FORMATION IN MAMMALIAN OOCYTES

So et al, 2019, Science

TACC3 does not localize properly in *Aurka* knockout oocytes Blengini et al, 2021, *PLoS Genetics*

- The LISD selectively concentrates multiple microtubule regulatory factors and allows them to diffuse rapidly within the spindle volume.
- LISD formation is regulated by AURKA and PLK1

Courtois et al, 2017, J Cell Biol., PMID: 22851319

the number of cellular MTOCs progressively decreased, the spindle pole gradually became more focused, and spindle length progressively scaled down with cell size

Live-cell imaging of mouse zygote for differential labelling of maternal (magenta) and paternal (cyan) centromeres. Chromosome arms are labelled with H2B-mCherry (grey). Time resolution is 7.5 min, Reichmann et al, 2018, *Science, PMID:30002254*

 The paternal and maternal genome remain spatially separate throughout the first mitosis of mouse zygotes

Individual bipolar spindle formation around each pronucleus in mouse zygotes

Reichmann et al, 2018, Science, PMID: 30002254

 Failure to align the two zygotic spindles gives rise to multinucleated twocell stage embryos

TAKE-HOME MESSAGES

- □ differences between **mitosis** and **meiosis**
- **cell cycle arrest** at prophase I and metaphase II
- meiotic recombination
 - highly regulated process promote the formation of at least one crossover per bivalent – prerequisity for proper chromosome segregation in meiotic divisions
- **meiotic resumption** from the prophase I regulated by **CDK1**
- maintaining of prophase I arrest
- meiotic maturation
- alternative pathways for spindle assembly
- SAC lacks stringency
- meiotic-to-mitotic transition
- cell cycle adaptations in early embryos