CDK1 ACTIVITY DURING MEIOTIC MATURATION
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https://socratic.org/questions/where-in-the-body-do-oocytes-mature

0 Mouse oocytes proceed through meiosis | and arrest at second meiotic
metaphase with high CDK1-cyclin B1 activity.



MPF AND APC ACTIVITY DURING
METAPHASE Il ARREST
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J Cell Sci. 2006 Apr 1;119(Pt 7):1213-8.

0 Cytostatic factor (CSF) is responsible for metaphase Il arrest



METAPHASE Il ARREST AND EGG ACTIVATION TRIGGERED
Y FERTILIZATION
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PLCz - Phospholipase C zeta, CAMKII - Calcium/calmodulin-dependent protein kinase Il

0 Emi2is responsible for metaphase Il arrest



MEIOTIC-TO-MITOTIC TRANSITION
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Clift, Schuh, 2013, Nat Rev Mol Cell Biol., PMID: 23942453

O SCC1l-containing cohesin complexes are loaded onto chromosomes
immediately in the zygote



FROM A TRANSCRIPTIONALLY SILENT ZYGOTE TO THE
ZYGOTIC GENOME ACTIVATION
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Highlights of the mouse oocyte-to-embryo transition
https://www.biochem.mpg.de/tachibana/research

0 Maternal transcripts are degraded and embryonic transcription in the
major zygotic genome activation occurs in the 2-cell mouse embryo



INITIAL EMBRYONIC CELL DIVISIONS ARE ACCOMPANIED
BY CELL CYCLE ADAPTATIONS

The first cell cycle The second cell cycle

1-8h

The estimated duration of cell cycle stages during murine embryonic cell cycles
Palmer, Kaldis, 2016, Curr Top Dev Biol.

0 Regulation of the transition from a long G1 and short G2 in zygotes to a
short G1 and long G2 in two-cell embryos and the mechanisms by which
the cell cycle regulates genomic integrity remain largely unknown.



CHK1 KINASE IS ESSENTIAL FOR THE GENOME INTEGRITY
PROTECTION IN SOMATIC CELLS

DNA DAMAGE
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k‘ Cyclin B/ Cdk1

Mitosis G2 arrest

The cell cycle checkpoint pathway activated by DNA damage
Gillespie, 2018, modified

0 CHK1 activity inhibits CDC25 phosphatases and thus holds the cells in the
G2 phase until ready to enter the mitotic phase after DNA repair



CHK1 KINASE IS ESSENTIAL FOR MAINTAINING THE LONG
G2 PHASE IN TWO-CELL EMBRYOS
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CHK1 KINASE IS ESSENTIAL FOR MAINTAINING THE LONG
G2 PHASE IN TWO-CELL EMBRYOS
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Knoblochova et al, 2022, EMBO Rep.

0 CHK1-CDC25A-CDK1 maintains a long G2 phase in 2-cell mouse embryos
that protects early embryos from chromosome segregation errors that
result in aneuploidy and infertility.




CHROMOSOME SEGREGATION AND CONFIGURATION IN
OOCYTES
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Thomas et al, 2021, Biochemical Society Transaction

0 Merotelic attachments during the multipolar stages are a common cause of
lagging chromosomes in anaphase




SPINDLE ASSEMBLY IN OOCYTES -
IMPLICATIONS FOR HUMAN INFERTILITY
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CENTRIOLE LOSS IN MAMMALIAN OOCYTES
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Simerly et al, 2018, Sci Rep., PMID: 30143724

0 Separation and gradual loss of centrioles from primordial germ cells to
mature oocytes in the mouse




ACENTRIOLAR SPINDLE FORMATION
IN MAMMALIAN OOCYTES
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0 Acentriolar MTOCs (microtubule organizing centers)-dependent and
chromatin-dependent pathways contribute to acentrosomal spindle
assembly

0 alternative pathways




MTOCS-DEPENDENT SPINDLE ASSEMBLY

IN MOUSE OOCYTES
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Three-step mechanism of MTOC fragmentation in mouse oocytes

Clift a Schuh, 2014, Nature Communications

0 Each step of MTOCs behaviour and spindle formation is critical for correct

chromosome segregation



AURKA AURKB

ROLE OF AURORA KINASES (AURKS)
IN SPINDLE ASSEMBLY
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Somatic cells

O AURKA — centrosomes

O AURKB-CPC
(chromosomal passenger
complex)

Germ cells

0 AURKA - MTOCs

0 AURKB-"?

O AURKC - CPC, MTOCs

0O Why germ cells express three Aurora kinases instead of two?



A MODEL OF OOCYTE-SPECIFIC
AURKB/AURKC DOUBLE-KNOCKOUT MICE

WT B cKO CKO B cKO/C KO
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DNA,Spindle

AURKA localized to chromosomes

in oocytes upon deletion of Aurkc
Aurkb/Aurkc double KO (B cKO/C KO)

mice are subfertile

Nguyen a kol., 2018, Current Biology

0 AURKA specifically in mouse oocytes compensates for loss of AURKB/C



A MODEL OF OOCYTE-SPECIFIC
AURKA KNOCKOUT MICE

Aurka knockout oocytes (KO) are arrested in Metaphase | with defective spindle
Blengini et al, 2021, PLoS Genetics

Chromosomes, spindle, , time (hh:mm) after meiotic resumption

O AURKA is required for spindle assembly and meiosis I-meiosis Il transition
in mouse oocytes



ROLE OF AURKA IN MTOCS FRAGMENTATION
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0O AURKA is required for full PLK1 activation to initiate MTOC fragmentation
through inducing C-NAP1 release from aMTOCs



MTOC SORTING IS REGULATED
BY AURKC AND HASPIN KINASE
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Haspin regulates AURKC localization
on chromosomes and MTOCs

Live-cell imaging of haspin-inhibited oocytes

Balboula et al, 2016, Journal of Cell Science
Chromosomes, spindle, MTOCs, time (hh:mm)
after meiotic resumption

0 Haspin regulates AURKC localized-function at MTOCs in mouse oocytes

O MTOCs clustering defects are associated with segregation errors




MTOC SORTING IS REGULATED BY HURP

wit

Hurp-/-

MTOC size (a.u

0 spindle axis (a.u.) 1l
Breuer et al, 2010

By promoting stability in the spindle central domain, HURP allows MTOC
sorting, providing bipolarity establishment and maintenance

HURP has a critical role in the clustering of extra centrosomes during
mitosis in human cancer cells



THE ROLE OF RANGTP-IMPORTIN BETA PATHWAY

NS

Importin-c.

RanT24N — dominant negative Ran
RanQ69L — constitutively active Ran
SAF - spindle assembly factor

Involvement of Ran in spindle assembly

Clarke, Zhang, 2008, Nature reviews. Molecular cell biology

0 During cell division, high concentrations of RanGTP around the spindle
assembly regions attract the importins and release NLS-containing SAFs
from inhibitory importins




INHIBITION OF RANGTP PATHWAY USING DOMINANT
NEGATIVE RAN MUTANT
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Human Mouse
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Bl Chromosomes E Microtubules

‘ Holubcova et al, 2015, Science
Dumont et al, 2007, Journal of Cell Biology

RanGTP inhibition did not affect
assembly of functional spindles

Spindle assembly is dependent on
RanGTP, but independent on MTOCs




EFFECT OF IMPORTAZOLE (IPZ)
ON SPINDLE ASSEMBLY IN MOUSE OOCYTES

Imp-B — control

Importin B (Imp-B)
inhibitor Importazole (IPZ)
blocks Ran binding
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bipolar disassembly GV arrest

Live-cell imaging of spindle assembly in Importazole (IPZ)-treated mouse oocytes

0 RanGTP is required for the proper formation of the meiotic spindle



EFFECT OF IMPORTAZOLE AND RANT24N
ON RANGTP GRADIENT FORMATION
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Drutovic et al, 2020, EMBO Journal

0 Dominant negative RanT24N, as well as Importazole, reduced the RanGTP
gradient in mouse oocytes




EFFECT OF IMPORTAZOLE AND RANT24N
ON RANGTP GRADIENT FORMATION

I
RanT24N Importazole
P<0.0001 _ 5= 0019 _ P=00001 = P=05784 (NS
F2q ﬁjﬁn_ — = 10, . W 60n
R I LA L
E @ £ s o
52 i g a0 ° g% " % 40 In contrast to Importazole, RanT24N
E< 6- E s 3 . .
2% ] 5 5 30/ 28 & 940 8 w0 increased the overall RanGTP activity
8 £ 20/ 334 0 £ 20/
§§ = fu E?E 3' o E:
: 0. @; g,m- E T - % 10
E'Zéé z 0l t— £ o & ol
Dé\%éﬁ F 3 & &
P
Immunoblots: |
importin B
Importin a1 RanT24N binds to importin 3
in mouse oocyte through T42 site
Baits: o“\é?\
~6\°\0 @
4\
2
R
<

0 RanT24N did not act as a dominant negative mutant of Ran



SPINDLE ASSEMBLY IN HUMAN OOCYTES
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So et al, 2022, Science, PMID: 35143306

O microtubule cross-linking protein NUMA localized to microtubule minus
ends (spindle poles) in human oocytes

0 NUMA-depleted human oocytes formed spindles with defocused poles




SPINDLE ASSEMBLY IN OOCYTES -
IMPLICATIONS FOR HUMAN INFERTILITY
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KIFC1 stabilizes the spindle poles and prevents their fragmentation
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KIFC1 is present in other mammalian oocytes but deficient in human
oocytes

O Microinjection of KIFC1 rescued stabile spindle poles formation in human
oocytes




LISD AS A ALTERNATIVE STRATEGY
FOR SPINDLE FORMATION IN MAMMALIAN OOCYTES

A Liquid-like melotic spindie Kinetochores Spindle No spindie Key TAC C 3
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TACC3 does not localize properly
So et al, 2019, Science in Aurka knockout oocytes
Blengini et al, 2021, PLoS Genetics

O The LISD selectively concentrates multiple microtubule regulatory factors
and allows them to diffuse rapidly within the spindle volume.

0 LISD formation is regulated by AURKA and PLK1




MEIOTIC-TO-MITOTIC SPINDLE TRANSITION IN MOUSE
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0 the number of cellular MTOCs progressively decreased, the spindle pole

gradually became more focused, and spindle length progressively scaled
down with cell size




MEIOTIC-TO-MITOTIC SPINDLE TRANSITION IN MOUSE

Live-cell imaging of mouse zygote for differential labelling of maternal
(magenta) and paternal (cyan) centromeres. Chromosome arms are labelled
with H2B-mCherry (grey). Time resolution is 7.5 min, Reichmann et al, 2018,

Science, PMID:30002254

0 The paternal and maternal genome remain spatially separate throughout
the first mitosis of mouse zygotes



MEIOTIC-TO-MITOTIC SPINDLE TRANSITION IN MOUSE
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0 Individual bipolar spindle formation around each pronucleus in mouse

zygotes
31 Y€



MEIOTIC-TO-MITOTIC SPINDLE TRANSITION IN MOUSE

Embryo 2

Embryo 3

[ o-tubulin-EGFP  [] H2B-mCherry

Reichmann et al, 2018, Science, PMID:30002254

0 Failure to align the two zygotic spindles gives rise to multinucleated two-
cell stage embryos



TAKE-HOME MESSAGES

O differences between mitosis and meiosis
0 cell cycle arrest at prophase | and metaphase |l
0 meiotic recombination

O highly regulated process promote the formation of at least one
crossover per bivalent — prerequisity for proper chromosome
segregation in meiotic divisions

meiotic resumption from the prophase | regulated by CDK1
maintaining of prophase | arrest

meiotic maturation

alternative pathways for spindle assembly

SAC lacks stringency

meiotic-to-mitotic transition

o O 0O 0 0 0 od

cell cycle adaptations in early embryos




