CELL CYCLE REGULATION IN MAMMALIAN OOCYTES AND

EARLY EMBRYOS

0 standard somatic cell cycle is modulated to
meet the specific requirements of different
developmental stages
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FOLLICULOGENESIS AND OOGENESIS
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Oocyte can initiate, modulate, and terminate follicle growth and maturation
Jones, Shikanov, 2019, J Biol Eng., PMID: 30647770

0O oocyte—somatic cell interactions

0 gonadotropin-dependent antral follicle growth




GENERATION OF OOCYTE-SPECIFIC GENE KNOCKOUT
MOUSE LINES
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Sun et al, 2008, Biol Reprod., PMID: 18753607

0 Cre-recombinase expression is driven by oocyte-specific zona pellucida 3
(Zp3) promoter or growth differentiation factor 9 (Gdf9) promoter




CELL CYCLE ARREST - MEIOTIC PROPHASE | IN
MAMMALIAN OOCYTES
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Wang, Pepling, 2021, Front Cell Dev Biol., PMID: 34095134
fetal development

at postnatal day 5, most of mouse oocytes have reached the late diplotene
(in humans from 8- to 28-week of fetal development)

O mammalian oocytes are arrested at prophase | until puberty




MEIOTIC RECOMBINATION DURING MEIOTIC PROPHASE |
IN MAMMALIAN OOCYTES
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Baudat et al, 2013, Nat Rev Genet., PMID: 24136506

0 programmed induction of DNA double-strand breaks (DSBs) leading to the
exchange of genetic material between homologous chromosomes

0 essential for genome diversity and proper chromosome segregation

O synaptonemal complex - SYCP3

0 RAD51, DMC1 — DNA recombinases — DSB repair — 200-400 foci/cell

O MEI4 - DSB induction

Q MLH1 - crossover



REGULATION OF MEIOTIC RECOMBINATION IN
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Baudat et al, 2013, Nat Rev Genet., PMID: 24136506
0 PRDM9 - sequence-specific DNA-binding histone methyltransferase
O several domains
O SPO11 recruitment
0 ,hotspots”—1-2 kbp - short chromosomal intervals with C2H2 zinc finger

array
more than 40 PRDM9 alleles in humans
more than 25,000 crossover hot spots in humans

evolution of hotspots and hotspot paradox



MAMMALIAN OOCYTE MATURATION
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O meiosis | and meiosis Il —
primary vs. secondary oocyte

0 cell cycle arrest at prophase |
and metaphase Il

O asymmetric cell division

0 spinde formation




MEIOTIC RESUMPTION FROM THE PROPHASE |
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Time lapse imaging of lamin B1-EGFP and H2B-mCherry in mouse
oocytes after induction of meiotic resumption

Solc et al, 2015, PLoS One, PMID: 25658810

O germinal vesicle breakdown (GVBD) and chromosome condensation
followed by the microtubule assembly

0 often compared with the G2-M transition in somatic cells



SPECIFIC REQUIREMENTS OF CDKS DURING THE MEIOTIC

RESUMPTION

Table 1 | Representative mouse models carrying gene-targeted CDK alleles*

Kinase
Loss-of-function strains

CDK1
CDK2

CDK4

CDK6
CDK11

CDKZ2; CDK4; CDKG6

Genotype®

Cdklmut}mut
Cdk27"-

Cdk4"-

Cdk6™~
Cdk117~

Cdk27- Cdk4™ Cdk6™~

Phenotype

Deficiency in CDK1 results in embryonic lethality
in the first cell divisions

Sterility due to defective meiosis; no effect on
mitotic cells

Diabetes and defective postnatal proliferation
of endocrine cells such as pancreatic B-cells or
pituitary hormone-producing cells

Slight anaemia and defective proliferation of
some haematopoietic cells

Embryonic lethality in peri-implantation embryos
accompanied by mitotic aberrations

Deficiency in all these interphase CDKs provokes
embryonic lethality by mid-gestation due to
haematopoietic defects

Malumbres, Barbacid, 2009, Nature Reviews



SPECIFIC REQUIREMENTS OF CDK1 AND CDK2 DURING
THE MEIOTIC RESUMPTION
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Adhikari et al, 2012, Hum Mol Genet, PMID: 22367880

O Cdk2 is not required for the resumption of meiosis in mouse oocytes



SPECIFIC REQUIREMENTS OF CDK1 AND CDK2 DURING
THE MEIOTIC RESUMPTION
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MECHANISMS OF CDK1 REGULATION

B

0 cyclins, activating and inhibitory phosphorylation




MECHANISMS OF CDK1 REGULATION IN MAMMALIAN
OOCYTES

+ Cdc25b cRNA

+ catalytically inactive
Cdc25b cRNA

Cdc25b—/- oocytes are permanently arrested at the
germinal vesicle stage

Lincoln et al, 2002, Nat Genet. PMID: 11912493

0O CDC25B phosphatase is required for resumption of meiosis



MECHANISMS OF CDK1 REGULATION IN MAMMALIAN
OOCYTES
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0O CDC25B is also required for the MI-MIl transition in mouse oocytes
(Ferencova et al, 2022, J Cell Sci., PMID: 35237831)

0 How to restore CDK1 activity in Cdc25b -/- oocytes?




MAINTAINING OF PROPHASE | ARREST

cAMP - cyclic adenosine monophosphate
PDE-3A - phosphodiesterase 3A
AC -adenylate cyclase

o 0O 0O O

PKA — protein kinase A

cytoplasm nucleus

CDC25B is sequestered in the cytoplasm by the 14-3-3 adaptor protein
Pirino et al, 2009, Cell Cycle, PMID: 19223768
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MAMMALIAN OOCYTE MATURATION
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O meiosis | and meiosis Il —
primary vs. secondary oocyte

0 cell cycle arrest at prophase |
and metaphase Il

O asymmetric cell division

0 spinde formation



REGULATION OF SEPARASE ACTIVITY IN HOMOLOGOUS
CHROMOSOMES SEGREGATION
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ACTIVITY OF APC/C-CDH1, APC/C-CDC20 AND MPF
DURING MEIOSIS
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CYCLIN B1 DEGRADATION IN SOMATIC CELLS VS MOUSE
OOCYTES
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in somatic cell...
Gavet, Pines, 2010, Dev Cell., PMID: 20412769 Levasseur et al, 2019, Dev Cell., PMID: 30745144

...and mammalian oocyte

0 triggered in metaphase in mitotic cells, but in prometaphase | in
mammalian oocytes




CYCLIN B1 DEGRADATION IN MOUSE OOCYTES
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0 destruction motives:
0O NTH - not SAC sensitive, masked within the cyclin B1:CDK1 interface
0 D-box- SAC sensitive need high APC activity for destruction



CYCLIN B1 DEGRADATION IN MOUSE OOCYTES
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0 Total cyclin B1 level does not reflect CDK1 activity in MI oocytes because
an excess of free cyclin B1 is destroyed ahead of CDK1-bound cyclin B1

0 Prolonged CDK1 activity assists the SAC and prevents aneuploidy



SPINDLE ASSEMBLY CHECKPOINT (SAC) IN MEIOSIS
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SPINDLE ASSEMBLY CHECKPOINT (SAC) IN MEIOSIS
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SAC SIGNALING IN MAMMALIAN OOCYTES LACKS
STRINGENCY
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O oocyte aging,...




REGULATION IN HOMOLOGOUS CHROMOSOMES
SEGREGATION IN MAMMALIAN OOCYTES
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Beverley et al, 2021, Frontiers in Cell and Developmental Biology

0 Cohesin subunit Rec8 at centromeres is protected from cleavage due to the
presence of shugoshin.



AGE-RELATED DECREASE OF MEIOTIC COHESINS IN
HUMAN OOCYTES
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CDK1 ACTIVITY DURING MEIOTIC MATURATION
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https://socratic.org/questions/where-in-the-body-do-oocytes-mature

0 Mouse oocytes proceed through meiosis | and arrest at second meiotic
metaphase with high CDK1-cyclin B1 activity.



