

Timing of meiotic resumption

Early mouse embryos - Bright-field imaging

Mouse fibroblasts- Bright-field imaging

Advantages

study of cellular events, timing

□ germinal vesicle (A), meiotic resumption (B), extruding the first polar body (C)

embryo developmental stages

□ involvement of **signaling pathways**, proteins,... in these processes

Limitations

- optical resolution, low contrast
- □ culture conditions, pH, CO₂ level, O₂ level, oocyte and early embryo handling
- subcellular events fluorescence live-cell imaging

FLUORESCENCE MICROSCOPY TECHNIQUES FOR LIVE CELL IMAGING

FLUORESCENCE MICROSCOPY TECHNIQUES FOR LIVE CELL IMAGING

Advantages

- study of subcellular events
- □ image analysis qualitative and quantitative information

Limitations

- □ culture conditions, pH, CO₂ level, O₂ level, oocyte and early embryo handling
- phototoxicity, photobleaching,...

IMMUNOFLUORESCENCE VS FLUORESCENCE LIVE CELL IMAGING

FLUORESCENCE MICROSCOPY

Philip Ronan, https://en.wikipedia.org/wiki/Visible_light_communication

Radio waves Kilometres (km) Red Nanometres (nm) Violet Nanometres (nm) Gamma ray Picometres (pm)

https://lightcolourvision.org/resourc e-library/comparing-wavelengthsradio-gamma/

As you move from violet to red, the wavelength increases and energy decreases

FLUORESCENCE MICROSCOPY

https://www.scientifica.uk.com/learning-zone/widefield-fluorescence-microscopy

The range of wavelengths that a fluorophore can absorb and emit are known as excitation and emission spectra

FLUORESCENCE PROTEINS

Aequorea victoria

Discosoma sp.

http://zeiss-

campus.magnet.fsu.edu/print/probes/fpintroductio n-print.html

FLUORESCENCE PROTEINS

http://zeiss-

campus.magnet.fsu.edu/print/probes/fpintroductionprint.html

Recombinant protein expression:

- transfection
- electroporation (DNA, mRNA, protein)
- microinjection (DNA, mRNA, protein)
 - Ientiviruses
 - □ CRISPR/Cas9
- Transgenic models CAG::H2B-EGFP mice

FLUORESCENCE PROTEINS

 design of DNA plasmids, and possible modifications (fluorescence markers, targeting, mutations, polyA tailing...)

	The second second second	Lange Statement	100000-00706	
An entry of the second second	Contract states on the		Daima and	the second se

	mEGFP	
ys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr A	Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys	Gin Lys Asn Gly Ile Lys Val Asn Phe Lys Ile
caacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccc	catcggcgacggccccgtgctgctgcccgacaaccact	tacctgagcacccagtccgccctgagcaaagaccc
gttgtagctcctgccgtcgcacgtcgagcggctggtgatggtcgtcttgtgggg	gtagccgctgccggggcacgacgacgggctgttggtga	atggactcgtgggtcaggcgggactcgtttctggg
	mEGFP	
s Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro	o Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His	Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro
AflII	BsrGI	SalI AccI
gagaagcgcgatcacatggtccttaaggagttcgtgaccgccgcgggatcact	ctcggcatggacgagctgtacaagtactcagatctcg	agctcaagcttcgaattctgcagtcgacgatggac
+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	
ctcttcgcgctagtgtaccaggaattcctcaagcactggcggcggccctagtga	gagccgtacctgctcgacatgttcatgagtctagagc	cgagttcgaagcttaagacgtcagctgctacctg
meger		
		mCDV5PAD2
1000		IIICDKJKAF2

ctgaagggcatcgacttcaaggaggacggcacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatcc

Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His 🛏

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala 👘 🛶

910

AgeI

FLUORESCENCE PROTEIN PLAZMIDS

FLUORESCENCE PROTEIN PLAZMIDS

VITAL FLUORESCENCE PROBES – SILICON RHODAMINE (SIR) PROBES

www.spirochrome.com

- SiR-tubulin microtubule binding drug Docetaxel
- □ SiR-actin F-actin binding natural product jasplakinolide
- □ SiR-lysosome cathepsin D binding natural product pepstatin A

VITAL FLUORESCENCE PROBES – SIR PROBES

www.spirochrome.com

VITAL FLUORESCENCE PROBES – SPYTM PROBES

VITAL FLUORESCENCE PROBES – SPYTM PROBES

www.spirochrome.com

DUAL COLOUR IMAGING WITH SIR- AND SIR700-PROBES

Fluorophore	λ _{abs (max)} (nm)	ε _{max} (M⁻¹⋅cm⁻¹)	λ _{em (max)} (nm)	lifetime (ns)	QY
SiR	652	100,000	667	2.7	0.4
SiR700	689	100,000	716	1.4	0.13

Example of bleed through removal by image subtraction one cells stained with SIR-tysosome and SIR700-tubulin. Scale bar 10 um.

Dual colour imaging examples

www.spirochrome.com

MULTICOLOUR IMAGING

Advantages

two and more subcelullar structures, cell types (up to ten?)

Limitations

spectral overlap

https://bitesizebio.com/33529/fluorescence-microscopy-the-magic-of-fluorophores-and-filters/

selection of fluorescence proteins

- EGFP, mCherry, far-red SiR
- EGFP, EYFP, mCherry, SiR ?

phototoxicity

FPBASE :: THE FLUORESCENT PROTEIN DATABASE

FPbase :: The Fluorescen	t Protein × +			~ - 0 ×
\leftrightarrow \rightarrow C \cong fpbas	e.org			ⓒ ☆ 😩 :
		FP base	info▼ tools▼ explore▼ sign in	
		Bar Stat		
		The second	Find a Protein	
		a ball	Search	
			advanced search	
		NO ALSK		
		1 27 128		
y			🎉 789 Pro	oteins 🛛 🗠 743 FP Spectra
Type here to	search	0 🛱 💽 💽 🦬 😭 👔		へ ê 冒 如) CES 8:46 AM 1/7/2022 🖏

\sim ٥ X 6 \$

D ∧ Q ↓ ↓) CES 8:47 AM 1/7/2022

导

.

▲ EGFP :: Fluorescent Protein Datab × +

Oligomerization	Organism	Molecular Weight	Cofactor
Weak dimer	Aequorea victoria	26.9 kDa	-

Attributes							FPbase ID: R9NL8
Εχ λ	Em λ	EC (M ⁻¹ cm ⁻¹)	QY	Brightness	рКа	Maturation (min)	Lifetime (ns)
488	507	55,900	0.6	33.54	6.0	25.0	2.6
							Edit States (Attributes

EGFP OSER Measurements 0

% Normal Cells	OSER/NE ratio	Cell Type	Reference
76.5 ± 6.9 (10000 cells)		HeLa	Cranfill et al. (2016) 🗹
76.5 ± 6.9 (10000 cells)		HeLa	Shaner et al. (2013) 🛃
76.5 ± 6.9 (10000 cells)		HeLa	Hoi et al. (2013) 🗹
-	3.89 ± 0.25 (50 cells)	U-2 OS	Costantini et al. (2012) 🔀

Photostability

t _{1/2} (s)	Power	Light	Mode	In Cell	Fusion	°c	Reference
174.0		Arc-lamp	Widefield	×	none	23.0	Shaner et al. (2005) 🔀
50.1	1.5 (mW)	Laser	Point Scanning Confocal	int Scanning Confocal Hela		Zhong et al. (2018) 🛃	
A caution on inter	pretation of photostabili	ty measurements					Add photostability info

EGFP Sequence 🗸

EGFP was derived from avGFP with the following mutations: M1_S2insV/F64L/S65T/H231L

1 MVSKGEELFT GVVPILVELD GDVNGHKFSV SGEGEGDATY GKLTLKFICT TGKLPVPWPT LVTTLTYGVQ CFSRYPDHMK QHDFFKSAMP 91 EGYVQERTIF FKDDGNYKTR AEVKFEGDTL VNRIELKGID FKEDGNILGH KLEYNYNSHN VYIMADKQKN GIKVNFKIRH NIEDGSVQLA 181 DHYQQNTPIG DGPVLLPDNH YLSTQSALSK DPNEKRDHMV LLEFVTAAGI TLGMDELYK

SELECTION OF FLUORESCENCE PROTEINS FOR MULTICOLOUR IMAGING

WIDE-FIELD VS CONFOCAL MICROSCOPY

https://bitesizebio.com/33529/fluorescence-microscopy-the-magic-of-fluorophores-and-filters/

https://www.edmundoptics.eu/knowledge-center/application-notes/microscopy/confocal-microscopy/

CELL CYCLE ANALYSIS IN TRANFECTED SOMATIC CELLS

Confocal live-cell imging of HeLa cells H2B-mCherry

Confocal live-cell imging of HeLa cells H2B-mCherry, alfa-tub-eGFP

CELL CYCLE ANALYSIS IN TRANFECTED SOMATIC CELLS

CELL CYCLE ANALYSIS IN TRANFECTED SOMATIC CELLS

In silico synchronization

LIVE-CELL MICROSCOPY OF MOUSE OOCYTES

Advantages of mouse oocytes:

✓ spherical shape

✓ size

- ✓ optical transparency
 - ✓ availability
 - ✓ microinjection

Live-cell experiment:

- 1.Isolation of mouse oocytes
 - 2.mRNA microinjection
 - □ 3. expression of marker
 - 4. imaging

ACENTROSOMAL SPINDLE FORMATION IN MAMMALIAN OOCYTES

Light-sheet live-cell imaging

H2B-mCherry, SiR-tubulin, CDK5RAP2-eGFP

Time hh:mm after GVBD

HOMOLOGOUS CHROMOSOME SEGREGATION IN MAMMALIAN OOCYTES

Beverley et al, 2021, Frontiers in Cell and Developmental

Biology

H2B-mCherry, CENP-C-2x mEGFP Time hh:mm after meiotic resumption

HOMOLOGOUS CHROMOSOME SEGREGATION IN MAMMALIAN OOCYTES

Chromosome fragments

Premature separation of homologues chromosomes

Anaphase bridges

APC ACTIVATION IN MAMMALIAN OOCYTES

Wassmann, 2022, Cells

APC ACTIVATION IN MAMMALIAN OOCYTES

H2B-mCherry, SiR-tubulin, securin-eGFP

Time hh:mm after meiotic resumption

INITIAL EMBRYONIC CELL DIVISIONS IN MOUSE

Knoblochova et al 2022, bioRxiv

Confocal live-cell imaging of chromosomes and MTOCs during 1st division in of mouse zygote - Drutovic, 2020, unpublished

PREIMPLANTATION DEVELOPMENT

Knoblochova et al 2022, bioRxiv

"TRIANGLE OF FRUSTRATION"

CONFOCAL VS SPIM MICROSCOPY

SPIM - Selective Plane Illumination Microscopy

SPIM Light-Sheet Microscopy Reduces Phototoxicity

https://www.prnewswire.com/news-releases/bruker-acquires-emerging-light-sheet-microscopy-company-luxendo-300452724.html

Advantages of SPIM

- selective illumination
- high acquisition speed
- reduced phototoxicity
- increased signalto-noise ratio

SPIM (SINGLE PLANE ILLUMINATION MICROSCOPY)

www.photometrics.com/learn/light-sheetmicroscopy/introduction-to-light-sheet-microscopy4.html

VIVENTIS LS1 LIVE SPIM MICROSCOPY SYSTEM

PREIMPLANTATION DEVELOPMENT

Knoblochova et al 2022, bioRxiv

Light-sheet live-cell microscopy of preimplantation development Chromosomes (cyan), brightfield, time after HCG stimulation

LENGTH OF INDIVIDUAL CELL CYCLE PHASES

Cell. 2008 Feb 8;132(3):487-98.

VIVENTIS LS1 LIVE SPIM MICROSCOPY SYSTEM

Cell cycle progression during pre-implantation mouse embryos development H2B-mCherry, mCDT1-EYFP

SIGNALING PATHWAY ACTIVITY BY FRET BIOSENZORS

The anaphase phosphorylation gradient is observed for multiple Aurora B substrates Fuller et, 2008, Nature

QUANTITATIVE IMAGE ANALYSIS

